Cargando…
Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration
[Image: see text] The primary barrier that protects our lungs against infection by pathogens is a tightly sealed layer of epithelial cells. When the integrity of this barrier is disrupted as a consequence of chronic pulmonary diseases or viral insults, bacterial pathogens will gain access to underly...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432605/ https://www.ncbi.nlm.nih.gov/pubmed/32579327 http://dx.doi.org/10.1021/acsinfecdis.0c00403 |
_version_ | 1783571836721692672 |
---|---|
author | Palma Medina, Laura M. Becker, Ann-Kristin Michalik, Stephan Surmann, Kristin Hildebrandt, Petra Gesell Salazar, Manuela Mekonnen, Solomon A. Kaderali, Lars Völker, Uwe van Dijl, Jan Maarten |
author_facet | Palma Medina, Laura M. Becker, Ann-Kristin Michalik, Stephan Surmann, Kristin Hildebrandt, Petra Gesell Salazar, Manuela Mekonnen, Solomon A. Kaderali, Lars Völker, Uwe van Dijl, Jan Maarten |
author_sort | Palma Medina, Laura M. |
collection | PubMed |
description | [Image: see text] The primary barrier that protects our lungs against infection by pathogens is a tightly sealed layer of epithelial cells. When the integrity of this barrier is disrupted as a consequence of chronic pulmonary diseases or viral insults, bacterial pathogens will gain access to underlying tissues. A major pathogen that can take advantage of such conditions is Staphylococcus aureus, thereby causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human epithelium, especially nonpolarization and fibrogenesis during regeneration using an in vitro infection model. The infective process was monitored by quantification of the epithelial cell and bacterial populations, fluorescence microscopy, and mass spectrometry. The results uncover differences in bacterial internalization and population dynamics that correlate with the outcome of infection. Protein profiling reveals that, irrespective of the polarization state of the epithelial cells, the invading bacteria mount similar responses to adapt to the intracellular milieu. Remarkably, a bacterial adaptation that was associated with the regeneration state of the epithelial cells concerned the early upregulation of proteins controlled by the redox-responsive regulator Rex when bacteria were confronted with a polarized cell layer. This is indicative of the modulation of the bacterial cytoplasmic redox state to maintain homeostasis early during infection even before internalization. Our present observations provide a deeper insight into how S. aureus can take advantage of a breached epithelial barrier and show that infected epithelial cells have limited ability to respond adequately to staphylococcal insults. |
format | Online Article Text |
id | pubmed-7432605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-74326052020-08-19 Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration Palma Medina, Laura M. Becker, Ann-Kristin Michalik, Stephan Surmann, Kristin Hildebrandt, Petra Gesell Salazar, Manuela Mekonnen, Solomon A. Kaderali, Lars Völker, Uwe van Dijl, Jan Maarten ACS Infect Dis [Image: see text] The primary barrier that protects our lungs against infection by pathogens is a tightly sealed layer of epithelial cells. When the integrity of this barrier is disrupted as a consequence of chronic pulmonary diseases or viral insults, bacterial pathogens will gain access to underlying tissues. A major pathogen that can take advantage of such conditions is Staphylococcus aureus, thereby causing severe pneumonia. In this study, we investigated how S. aureus responds to different conditions of the human epithelium, especially nonpolarization and fibrogenesis during regeneration using an in vitro infection model. The infective process was monitored by quantification of the epithelial cell and bacterial populations, fluorescence microscopy, and mass spectrometry. The results uncover differences in bacterial internalization and population dynamics that correlate with the outcome of infection. Protein profiling reveals that, irrespective of the polarization state of the epithelial cells, the invading bacteria mount similar responses to adapt to the intracellular milieu. Remarkably, a bacterial adaptation that was associated with the regeneration state of the epithelial cells concerned the early upregulation of proteins controlled by the redox-responsive regulator Rex when bacteria were confronted with a polarized cell layer. This is indicative of the modulation of the bacterial cytoplasmic redox state to maintain homeostasis early during infection even before internalization. Our present observations provide a deeper insight into how S. aureus can take advantage of a breached epithelial barrier and show that infected epithelial cells have limited ability to respond adequately to staphylococcal insults. American Chemical Society 2020-06-24 2020-08-14 /pmc/articles/PMC7432605/ /pubmed/32579327 http://dx.doi.org/10.1021/acsinfecdis.0c00403 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Palma Medina, Laura M. Becker, Ann-Kristin Michalik, Stephan Surmann, Kristin Hildebrandt, Petra Gesell Salazar, Manuela Mekonnen, Solomon A. Kaderali, Lars Völker, Uwe van Dijl, Jan Maarten Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different Stages of Regeneration |
title | Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different
Stages of Regeneration |
title_full | Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different
Stages of Regeneration |
title_fullStr | Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different
Stages of Regeneration |
title_full_unstemmed | Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different
Stages of Regeneration |
title_short | Interaction of Staphylococcus aureus and Host Cells upon Infection of Bronchial Epithelium during Different
Stages of Regeneration |
title_sort | interaction of staphylococcus aureus and host cells upon infection of bronchial epithelium during different
stages of regeneration |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432605/ https://www.ncbi.nlm.nih.gov/pubmed/32579327 http://dx.doi.org/10.1021/acsinfecdis.0c00403 |
work_keys_str_mv | AT palmamedinalauram interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT beckerannkristin interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT michalikstephan interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT surmannkristin interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT hildebrandtpetra interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT gesellsalazarmanuela interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT mekonnensolomona interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT kaderalilars interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT volkeruwe interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration AT vandijljanmaarten interactionofstaphylococcusaureusandhostcellsuponinfectionofbronchialepitheliumduringdifferentstagesofregeneration |