Cargando…
Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation
Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg(−1) d(−1)) was orally...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432814/ https://www.ncbi.nlm.nih.gov/pubmed/32722636 http://dx.doi.org/10.3390/ijms21155303 |
_version_ | 1783571881117351936 |
---|---|
author | Zheng, Hong Xing Chen, De Jing Zu, Yue Xin Wang, En Zhu Qi, Shan Shan |
author_facet | Zheng, Hong Xing Chen, De Jing Zu, Yue Xin Wang, En Zhu Qi, Shan Shan |
author_sort | Zheng, Hong Xing |
collection | PubMed |
description | Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg(−1) d(−1)) was orally administrated for eight weeks to study its preventive effects on diabetic osteoporosis. The results showed that eight weeks of CS treatment improved the symptoms of diabetes; the CS-treated group has increased body weight, decreased water or food intake, decreased blood glucose, increased bone-mineral density, repaired bone morphology and decreased femoral osteoclasts and tibia adipocytes numbers. After CS treatment, bone histomorphometric parameters returned to normal, the levels of serum inflammatory cytokines (IL-1β, IL-6 and TNF-α) decreased significantly, serum SOD, GPX and CAT activities increased and MDA level increased. In the CS-treated group, the levels of serum ALP, CTX-1, TRACP 5b, osteocalcin and RANKL decreased and the serum RUNX 2 and OPG levels increased. Bone immunohistochemistry results showed that CS can effectively increase the expression of OPG and RUNX2 and reduce the expression of RANKL in diabetic rats. All of these indicate that CS could prevent STZ induced diabetic osteoporosis—mainly through decreasing blood glucose, antioxidative stress, anti-inflammation and regulation of OPG/RANKL expression. CS can therefore effectively prevent bone loss caused by diabetes. |
format | Online Article Text |
id | pubmed-7432814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74328142020-08-27 Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation Zheng, Hong Xing Chen, De Jing Zu, Yue Xin Wang, En Zhu Qi, Shan Shan Int J Mol Sci Article Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg(−1) d(−1)) was orally administrated for eight weeks to study its preventive effects on diabetic osteoporosis. The results showed that eight weeks of CS treatment improved the symptoms of diabetes; the CS-treated group has increased body weight, decreased water or food intake, decreased blood glucose, increased bone-mineral density, repaired bone morphology and decreased femoral osteoclasts and tibia adipocytes numbers. After CS treatment, bone histomorphometric parameters returned to normal, the levels of serum inflammatory cytokines (IL-1β, IL-6 and TNF-α) decreased significantly, serum SOD, GPX and CAT activities increased and MDA level increased. In the CS-treated group, the levels of serum ALP, CTX-1, TRACP 5b, osteocalcin and RANKL decreased and the serum RUNX 2 and OPG levels increased. Bone immunohistochemistry results showed that CS can effectively increase the expression of OPG and RUNX2 and reduce the expression of RANKL in diabetic rats. All of these indicate that CS could prevent STZ induced diabetic osteoporosis—mainly through decreasing blood glucose, antioxidative stress, anti-inflammation and regulation of OPG/RANKL expression. CS can therefore effectively prevent bone loss caused by diabetes. MDPI 2020-07-26 /pmc/articles/PMC7432814/ /pubmed/32722636 http://dx.doi.org/10.3390/ijms21155303 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zheng, Hong Xing Chen, De Jing Zu, Yue Xin Wang, En Zhu Qi, Shan Shan Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation |
title | Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation |
title_full | Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation |
title_fullStr | Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation |
title_full_unstemmed | Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation |
title_short | Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation |
title_sort | chondroitin sulfate prevents stz induced diabetic osteoporosis through decreasing blood glucose, antioxidative stress, anti-inflammation and opg/rankl expression regulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432814/ https://www.ncbi.nlm.nih.gov/pubmed/32722636 http://dx.doi.org/10.3390/ijms21155303 |
work_keys_str_mv | AT zhenghongxing chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation AT chendejing chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation AT zuyuexin chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation AT wangenzhu chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation AT qishanshan chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation |