Cargando…

Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation

Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg(−1) d(−1)) was orally...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Hong Xing, Chen, De Jing, Zu, Yue Xin, Wang, En Zhu, Qi, Shan Shan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432814/
https://www.ncbi.nlm.nih.gov/pubmed/32722636
http://dx.doi.org/10.3390/ijms21155303
_version_ 1783571881117351936
author Zheng, Hong Xing
Chen, De Jing
Zu, Yue Xin
Wang, En Zhu
Qi, Shan Shan
author_facet Zheng, Hong Xing
Chen, De Jing
Zu, Yue Xin
Wang, En Zhu
Qi, Shan Shan
author_sort Zheng, Hong Xing
collection PubMed
description Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg(−1) d(−1)) was orally administrated for eight weeks to study its preventive effects on diabetic osteoporosis. The results showed that eight weeks of CS treatment improved the symptoms of diabetes; the CS-treated group has increased body weight, decreased water or food intake, decreased blood glucose, increased bone-mineral density, repaired bone morphology and decreased femoral osteoclasts and tibia adipocytes numbers. After CS treatment, bone histomorphometric parameters returned to normal, the levels of serum inflammatory cytokines (IL-1β, IL-6 and TNF-α) decreased significantly, serum SOD, GPX and CAT activities increased and MDA level increased. In the CS-treated group, the levels of serum ALP, CTX-1, TRACP 5b, osteocalcin and RANKL decreased and the serum RUNX 2 and OPG levels increased. Bone immunohistochemistry results showed that CS can effectively increase the expression of OPG and RUNX2 and reduce the expression of RANKL in diabetic rats. All of these indicate that CS could prevent STZ induced diabetic osteoporosis—mainly through decreasing blood glucose, antioxidative stress, anti-inflammation and regulation of OPG/RANKL expression. CS can therefore effectively prevent bone loss caused by diabetes.
format Online
Article
Text
id pubmed-7432814
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74328142020-08-27 Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation Zheng, Hong Xing Chen, De Jing Zu, Yue Xin Wang, En Zhu Qi, Shan Shan Int J Mol Sci Article Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg(−1) d(−1)) was orally administrated for eight weeks to study its preventive effects on diabetic osteoporosis. The results showed that eight weeks of CS treatment improved the symptoms of diabetes; the CS-treated group has increased body weight, decreased water or food intake, decreased blood glucose, increased bone-mineral density, repaired bone morphology and decreased femoral osteoclasts and tibia adipocytes numbers. After CS treatment, bone histomorphometric parameters returned to normal, the levels of serum inflammatory cytokines (IL-1β, IL-6 and TNF-α) decreased significantly, serum SOD, GPX and CAT activities increased and MDA level increased. In the CS-treated group, the levels of serum ALP, CTX-1, TRACP 5b, osteocalcin and RANKL decreased and the serum RUNX 2 and OPG levels increased. Bone immunohistochemistry results showed that CS can effectively increase the expression of OPG and RUNX2 and reduce the expression of RANKL in diabetic rats. All of these indicate that CS could prevent STZ induced diabetic osteoporosis—mainly through decreasing blood glucose, antioxidative stress, anti-inflammation and regulation of OPG/RANKL expression. CS can therefore effectively prevent bone loss caused by diabetes. MDPI 2020-07-26 /pmc/articles/PMC7432814/ /pubmed/32722636 http://dx.doi.org/10.3390/ijms21155303 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zheng, Hong Xing
Chen, De Jing
Zu, Yue Xin
Wang, En Zhu
Qi, Shan Shan
Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation
title Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation
title_full Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation
title_fullStr Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation
title_full_unstemmed Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation
title_short Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation
title_sort chondroitin sulfate prevents stz induced diabetic osteoporosis through decreasing blood glucose, antioxidative stress, anti-inflammation and opg/rankl expression regulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432814/
https://www.ncbi.nlm.nih.gov/pubmed/32722636
http://dx.doi.org/10.3390/ijms21155303
work_keys_str_mv AT zhenghongxing chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation
AT chendejing chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation
AT zuyuexin chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation
AT wangenzhu chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation
AT qishanshan chondroitinsulfatepreventsstzinduceddiabeticosteoporosisthroughdecreasingbloodglucoseantioxidativestressantiinflammationandopgranklexpressionregulation