Cargando…
Deubiquitination Reactions on the Proteasome for Proteasome Versatility
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432943/ https://www.ncbi.nlm.nih.gov/pubmed/32726943 http://dx.doi.org/10.3390/ijms21155312 |
_version_ | 1783571910948290560 |
---|---|
author | Shin, Ji Yeong Muniyappan, Srinivasan Tran, Non-Nuoc Park, Hyeonjeong Lee, Sung Bae Lee, Byung-Hoon |
author_facet | Shin, Ji Yeong Muniyappan, Srinivasan Tran, Non-Nuoc Park, Hyeonjeong Lee, Sung Bae Lee, Byung-Hoon |
author_sort | Shin, Ji Yeong |
collection | PubMed |
description | The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome’s versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome’s proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes—USP14, RPN11, and UCH37—are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases. |
format | Online Article Text |
id | pubmed-7432943 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74329432020-08-28 Deubiquitination Reactions on the Proteasome for Proteasome Versatility Shin, Ji Yeong Muniyappan, Srinivasan Tran, Non-Nuoc Park, Hyeonjeong Lee, Sung Bae Lee, Byung-Hoon Int J Mol Sci Review The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome’s versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome’s proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes—USP14, RPN11, and UCH37—are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases. MDPI 2020-07-27 /pmc/articles/PMC7432943/ /pubmed/32726943 http://dx.doi.org/10.3390/ijms21155312 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Shin, Ji Yeong Muniyappan, Srinivasan Tran, Non-Nuoc Park, Hyeonjeong Lee, Sung Bae Lee, Byung-Hoon Deubiquitination Reactions on the Proteasome for Proteasome Versatility |
title | Deubiquitination Reactions on the Proteasome for Proteasome Versatility |
title_full | Deubiquitination Reactions on the Proteasome for Proteasome Versatility |
title_fullStr | Deubiquitination Reactions on the Proteasome for Proteasome Versatility |
title_full_unstemmed | Deubiquitination Reactions on the Proteasome for Proteasome Versatility |
title_short | Deubiquitination Reactions on the Proteasome for Proteasome Versatility |
title_sort | deubiquitination reactions on the proteasome for proteasome versatility |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432943/ https://www.ncbi.nlm.nih.gov/pubmed/32726943 http://dx.doi.org/10.3390/ijms21155312 |
work_keys_str_mv | AT shinjiyeong deubiquitinationreactionsontheproteasomeforproteasomeversatility AT muniyappansrinivasan deubiquitinationreactionsontheproteasomeforproteasomeversatility AT trannonnuoc deubiquitinationreactionsontheproteasomeforproteasomeversatility AT parkhyeonjeong deubiquitinationreactionsontheproteasomeforproteasomeversatility AT leesungbae deubiquitinationreactionsontheproteasomeforproteasomeversatility AT leebyunghoon deubiquitinationreactionsontheproteasomeforproteasomeversatility |