Cargando…

Dendritic Spines in the Spinal Cord: Live Action Pain

Dendritic spines are microscopic protrusions on neurons that house the postsynaptic machinery necessary for neurotransmission between neurons. As such, dendritic spine structure is intimately linked with synaptic function. In pathology, dendritic spine behavior and its contribution to disease are no...

Descripción completa

Detalles Bibliográficos
Autores principales: Benson, Curtis A, Reimer, Marike L, Tan, Andrew M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432977/
https://www.ncbi.nlm.nih.gov/pubmed/32864619
http://dx.doi.org/10.1177/2633105520951164
Descripción
Sumario:Dendritic spines are microscopic protrusions on neurons that house the postsynaptic machinery necessary for neurotransmission between neurons. As such, dendritic spine structure is intimately linked with synaptic function. In pathology, dendritic spine behavior and its contribution to disease are not firmly understood. It is well known that dendritic spines are highly dynamic in vivo. In our recent publication, we used an intravital imaging approach, which permitted us to repeatedly visualize the same neurons located in lamina II, a nociceptive processing region of the spinal cord. Using this imaging platform, we analyzed the intravital dynamics of dendritic spine structure before and after nerve injury–induced pain. This effort revealed a time-dependent relationship between the progressive increase in pain outcome, and a switch in the steady-state fluctuations of dendritic spine structure. Collectively, our in vivo study demonstrates how injury that leads to abnormal pain may also contribute to synapse-associated structural remodeling in nociceptive regions of the spinal cord dorsal horn. By combining our live-imaging approach with measures of neuronal activity, such as with the use of calcium or other voltage-sensitive dyes, we expect to gain a more complete picture of the relationship between dendritic spine structure and nociceptive physiology.