Cargando…
High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females
BACKGROUND: Physical exercise and activity status may modify the effect of the fat mass- and obesity-associated (FTO) genotype on body weight and obesity risk. To understand the interaction between FTO’s effect and physical activity, the present study investigated the effects of high and low intensi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433063/ https://www.ncbi.nlm.nih.gov/pubmed/32821265 http://dx.doi.org/10.1186/s12986-020-00489-1 |
_version_ | 1783571930287177728 |
---|---|
author | Danaher, Jessica Stathis, Christos G. Wilson, Robin A. Moreno-Asso, Alba Wellard, R. Mark Cooke, Matthew B. |
author_facet | Danaher, Jessica Stathis, Christos G. Wilson, Robin A. Moreno-Asso, Alba Wellard, R. Mark Cooke, Matthew B. |
author_sort | Danaher, Jessica |
collection | PubMed |
description | BACKGROUND: Physical exercise and activity status may modify the effect of the fat mass- and obesity-associated (FTO) genotype on body weight and obesity risk. To understand the interaction between FTO’s effect and physical activity, the present study investigated the effects of high and low intensity exercise on FTO mRNA and protein expression, and potential modifiers of exercise-induced changes in FTO in healthy-weighted individuals. METHODS: Twenty-eight untrained males and females (25.4 ± 1.1 years; 73.1 ± 2.0 kg; 178.8 ± 1.4 cm; 39.0 ± 1.2 ml.kg.min(− 1) VO(2peak)) were genotyped for the FTO rs9939609 (T > A) polymorphism and performed isocaloric (400 kcal) cycle ergometer exercise on two separate occasions at different intensities: 80% (High Intensity (HI)) and 40% (Low Intensity (LO)) VO(2peak). Skeletal muscle biopsies (vastus lateralis) and blood samples were taken pre-exercise and following 10 and 90 mins passive recovery. RESULTS: FTO mRNA expression was significantly decreased after HI intensity exercise (p = 0.003). No differences in basal and post-exercise FTO protein expression were evident between FTO genotypes. Phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) were significantly increased following HI intensity exercise (p < 0.05). Multivariate models of metabolomic data (orthogonal two partial least squares discriminant analysis (O2PLS-DA)) were unable to detect any significant metabolic differences between genotypes with either exercise trial (p > 0.05). However, skeletal muscle glucose accumulation at 10 mins following HI (p = 0.021) and LO (p = 0.033) intensity exercise was greater in AA genotypes compared to TT genotypes. CONCLUSION: Our novel data provides preliminary evidence regarding the effects of exercise on FTO expression in skeletal muscle. Specifically, high intensity exercise downregulates expression of FTO mRNA and suggests that in addition to nutritional regulation, FTO could also be regulated by exercise. TRIAL REGISTRATION: ACTRN12612001230842. Registered 21 November 2012 – Prospectively registered, https://www.anzctr.org.au/ |
format | Online Article Text |
id | pubmed-7433063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-74330632020-08-19 High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females Danaher, Jessica Stathis, Christos G. Wilson, Robin A. Moreno-Asso, Alba Wellard, R. Mark Cooke, Matthew B. Nutr Metab (Lond) Research BACKGROUND: Physical exercise and activity status may modify the effect of the fat mass- and obesity-associated (FTO) genotype on body weight and obesity risk. To understand the interaction between FTO’s effect and physical activity, the present study investigated the effects of high and low intensity exercise on FTO mRNA and protein expression, and potential modifiers of exercise-induced changes in FTO in healthy-weighted individuals. METHODS: Twenty-eight untrained males and females (25.4 ± 1.1 years; 73.1 ± 2.0 kg; 178.8 ± 1.4 cm; 39.0 ± 1.2 ml.kg.min(− 1) VO(2peak)) were genotyped for the FTO rs9939609 (T > A) polymorphism and performed isocaloric (400 kcal) cycle ergometer exercise on two separate occasions at different intensities: 80% (High Intensity (HI)) and 40% (Low Intensity (LO)) VO(2peak). Skeletal muscle biopsies (vastus lateralis) and blood samples were taken pre-exercise and following 10 and 90 mins passive recovery. RESULTS: FTO mRNA expression was significantly decreased after HI intensity exercise (p = 0.003). No differences in basal and post-exercise FTO protein expression were evident between FTO genotypes. Phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) were significantly increased following HI intensity exercise (p < 0.05). Multivariate models of metabolomic data (orthogonal two partial least squares discriminant analysis (O2PLS-DA)) were unable to detect any significant metabolic differences between genotypes with either exercise trial (p > 0.05). However, skeletal muscle glucose accumulation at 10 mins following HI (p = 0.021) and LO (p = 0.033) intensity exercise was greater in AA genotypes compared to TT genotypes. CONCLUSION: Our novel data provides preliminary evidence regarding the effects of exercise on FTO expression in skeletal muscle. Specifically, high intensity exercise downregulates expression of FTO mRNA and suggests that in addition to nutritional regulation, FTO could also be regulated by exercise. TRIAL REGISTRATION: ACTRN12612001230842. Registered 21 November 2012 – Prospectively registered, https://www.anzctr.org.au/ BioMed Central 2020-08-17 /pmc/articles/PMC7433063/ /pubmed/32821265 http://dx.doi.org/10.1186/s12986-020-00489-1 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Danaher, Jessica Stathis, Christos G. Wilson, Robin A. Moreno-Asso, Alba Wellard, R. Mark Cooke, Matthew B. High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females |
title | High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females |
title_full | High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females |
title_fullStr | High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females |
title_full_unstemmed | High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females |
title_short | High intensity exercise downregulates FTO mRNA expression during the early stages of recovery in young males and females |
title_sort | high intensity exercise downregulates fto mrna expression during the early stages of recovery in young males and females |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433063/ https://www.ncbi.nlm.nih.gov/pubmed/32821265 http://dx.doi.org/10.1186/s12986-020-00489-1 |
work_keys_str_mv | AT danaherjessica highintensityexercisedownregulatesftomrnaexpressionduringtheearlystagesofrecoveryinyoungmalesandfemales AT stathischristosg highintensityexercisedownregulatesftomrnaexpressionduringtheearlystagesofrecoveryinyoungmalesandfemales AT wilsonrobina highintensityexercisedownregulatesftomrnaexpressionduringtheearlystagesofrecoveryinyoungmalesandfemales AT morenoassoalba highintensityexercisedownregulatesftomrnaexpressionduringtheearlystagesofrecoveryinyoungmalesandfemales AT wellardrmark highintensityexercisedownregulatesftomrnaexpressionduringtheearlystagesofrecoveryinyoungmalesandfemales AT cookematthewb highintensityexercisedownregulatesftomrnaexpressionduringtheearlystagesofrecoveryinyoungmalesandfemales |