Cargando…
Periacetabular osteotomy with or without arthroscopic management in patients with hip dysplasia: study protocol for a multicenter randomized controlled trial
BACKGROUND: Hip dysplasia is one of the most common causes of hip arthritis. Its incidence is estimated to be between 3.6 and 12.8% (Canadian Institute for Health Information, Hip and knee replacements in Canada, 2017–2018: Canadian joint replacement registry annual report, 2019; Jacobsen and Sonne-...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433104/ https://www.ncbi.nlm.nih.gov/pubmed/32811527 http://dx.doi.org/10.1186/s13063-020-04592-9 |
Sumario: | BACKGROUND: Hip dysplasia is one of the most common causes of hip arthritis. Its incidence is estimated to be between 3.6 and 12.8% (Canadian Institute for Health Information, Hip and knee replacements in Canada, 2017–2018: Canadian joint replacement registry annual report, 2019; Jacobsen and Sonne-Holm, Rheumatology 44:211–8, 2004). The Periacetabular Osteotomy (PAO) has been used successfully for over 30 years (Gosvig et al., J Bone Joint Surg Am 92:1162–9, 2010), but some patients continue to exhibit symptoms post-surgery (Wyles et al., Clin Orthop Relat Res 475:336–50, 2017). A hip arthroscopy, performed using a small camera, allows surgeons to address torn cartilage inside the hip joint. Although both procedures are considered standard of care treatment options, it is unknown whether the addition of hip arthroscopy improves patient outcomes compared to a PAO alone. To delay or prevent future joint replacement surgeries, joint preservation surgery is recommended for eligible patients. While previous studies found an added cost to perform hip arthroscopies, the cost-effectiveness to Canadian Health care system is not known. METHODS: Patients randomized to the experimental group will undergo central compartment hip arthroscopy prior to completion of the PAO. Patients randomized to the control group will undergo isolated PAO. Patient-reported quality of life will be the primary outcome used for comparison between the two treatment groups as measured by The International Hip Outcome Tool (iHOT-33) (Saberi Hosnijeh et al., Arthritis Rheum 69:86–93, 2017). Secondary outcomes will include the four-square step test and sit-to-stand (validated in patients with pre-arthritic hip pain) and hip-specific symptoms and impairment using the HOOS; global health assessment will be compared using the PROMIS Global 10 Score; health status will be assessed using the EQ-5D-5L and EQ VAS questionnaires (Ganz et al., Clin Orthop Relat Res 466:264–72, 2008) pre- and post-operatively. In addition, operative time, hospital length of stay, adverse events, and health services utilization will be collected. A sub-group of patients (26 in each group) will receive a T1rho MRI before and after surgery to study changes in cartilage quality over time. A cost-utility analysis will be performed to compare costs and quality-adjusted life years (QALYs) associated with the intervention. DISCUSSION: We hypothesize that (1) concomitant hip arthroscopy at the time of PAO to address central compartment pathology will result in clinically important improvements in patient-reported outcome measures (PROMs) versus PAO alone, that (2) additional costs associated with hip arthroscopy will be offset by greater clinical improvements in this group, and that (3) combined hip arthroscopy and PAO will prove to be a cost-effective procedure. TRIAL REGISTRATION: ClinicalTrials.gov NCT03481010. Registered on 6 March 2020. Protocol version: version 3. |
---|