Cargando…
Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1
Bladder Cancer (BC) is the ninth most common tumor in the world and one of the most common malignant tumors of the urinary system. Some studies reported that miR‐133b expression is reduced in BC, but whether it plays a role in the development of BC and its mechanism is unclear. microRNAs can be pack...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433806/ https://www.ncbi.nlm.nih.gov/pubmed/32627968 http://dx.doi.org/10.1002/cam4.3263 |
_version_ | 1783572024397922304 |
---|---|
author | Cai, Xiaoxiao Qu, Lili Yang, Jian Xu, Junwen Sun, Li Wei, Xiaowei Qu, Xiaojun Bai, Tingting Guo, Zhirui Zhu, Yefei |
author_facet | Cai, Xiaoxiao Qu, Lili Yang, Jian Xu, Junwen Sun, Li Wei, Xiaowei Qu, Xiaojun Bai, Tingting Guo, Zhirui Zhu, Yefei |
author_sort | Cai, Xiaoxiao |
collection | PubMed |
description | Bladder Cancer (BC) is the ninth most common tumor in the world and one of the most common malignant tumors of the urinary system. Some studies reported that miR‐133b expression is reduced in BC, but whether it plays a role in the development of BC and its mechanism is unclear. microRNAs can be packaged into exosomes to mediate communication between tumor cells, affecting their proliferation and apoptosis. The objective of this study was to investigate the effect of exosomal miR‐133b on BC proliferation and its molecular mechanism. Firstly, the expression of miR‐133b was evaluated in BC and adjacent normal tissues, as well as in serum exosomes of BC patients and healthy controls. Then the delivery and internalization of exosomes in cells was observed through fluorescence localization. Cell viability and apoptosis were assessed in BC cells transfected with mimics and incubated with exosomes. The role of exosomal miR‐133b was also analyzed in nude mice transplant tumors. Furthermore, the target gene of miR‐133b was predicted through bioinformatics. The level of miR‐133b was significantly decreased in BC tissues and in exosomes from serum of patients, which was correlated with poor overall survival in TCGA. Exosomal miR‐133b could be obtained using BC cells after transfection with miR‐133b mimics. The miR‐133b expression increased after incubation with exosomal miR‐133b, which lead to the inhibition of viability and increase of apoptosis in BC cells. Exosomal miR‐133b could suppress tumor growth in vivo. In addition, we found that exosomal miR‐133b may play a role in suppressing BC proliferation by upregulating dual‐specificity protein phosphatase 1 (DUSP1). These findings may offer promise for new therapeutic directions of BC. |
format | Online Article Text |
id | pubmed-7433806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74338062020-08-20 Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 Cai, Xiaoxiao Qu, Lili Yang, Jian Xu, Junwen Sun, Li Wei, Xiaowei Qu, Xiaojun Bai, Tingting Guo, Zhirui Zhu, Yefei Cancer Med Cancer Biology Bladder Cancer (BC) is the ninth most common tumor in the world and one of the most common malignant tumors of the urinary system. Some studies reported that miR‐133b expression is reduced in BC, but whether it plays a role in the development of BC and its mechanism is unclear. microRNAs can be packaged into exosomes to mediate communication between tumor cells, affecting their proliferation and apoptosis. The objective of this study was to investigate the effect of exosomal miR‐133b on BC proliferation and its molecular mechanism. Firstly, the expression of miR‐133b was evaluated in BC and adjacent normal tissues, as well as in serum exosomes of BC patients and healthy controls. Then the delivery and internalization of exosomes in cells was observed through fluorescence localization. Cell viability and apoptosis were assessed in BC cells transfected with mimics and incubated with exosomes. The role of exosomal miR‐133b was also analyzed in nude mice transplant tumors. Furthermore, the target gene of miR‐133b was predicted through bioinformatics. The level of miR‐133b was significantly decreased in BC tissues and in exosomes from serum of patients, which was correlated with poor overall survival in TCGA. Exosomal miR‐133b could be obtained using BC cells after transfection with miR‐133b mimics. The miR‐133b expression increased after incubation with exosomal miR‐133b, which lead to the inhibition of viability and increase of apoptosis in BC cells. Exosomal miR‐133b could suppress tumor growth in vivo. In addition, we found that exosomal miR‐133b may play a role in suppressing BC proliferation by upregulating dual‐specificity protein phosphatase 1 (DUSP1). These findings may offer promise for new therapeutic directions of BC. John Wiley and Sons Inc. 2020-07-06 /pmc/articles/PMC7433806/ /pubmed/32627968 http://dx.doi.org/10.1002/cam4.3263 Text en © 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Cancer Biology Cai, Xiaoxiao Qu, Lili Yang, Jian Xu, Junwen Sun, Li Wei, Xiaowei Qu, Xiaojun Bai, Tingting Guo, Zhirui Zhu, Yefei Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 |
title | Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 |
title_full | Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 |
title_fullStr | Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 |
title_full_unstemmed | Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 |
title_short | Exosome–transmitted microRNA‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 |
title_sort | exosome–transmitted microrna‐133b inhibited bladder cancer proliferation by upregulating dual‐specificity protein phosphatase 1 |
topic | Cancer Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433806/ https://www.ncbi.nlm.nih.gov/pubmed/32627968 http://dx.doi.org/10.1002/cam4.3263 |
work_keys_str_mv | AT caixiaoxiao exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT qulili exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT yangjian exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT xujunwen exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT sunli exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT weixiaowei exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT quxiaojun exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT baitingting exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT guozhirui exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 AT zhuyefei exosometransmittedmicrorna133binhibitedbladdercancerproliferationbyupregulatingdualspecificityproteinphosphatase1 |