Cargando…
A systematic review of fuzzing based on machine learning techniques
Security vulnerabilities play a vital role in network security system. Fuzzing technology is widely used as a vulnerability discovery technology to reduce damage in advance. However, traditional fuzz testing faces many challenges, such as how to mutate input seed files, how to increase code coverage...
Autores principales: | Wang, Yan, Jia, Peng, Liu, Luping, Huang, Cheng, Liu, Zhonglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7433880/ https://www.ncbi.nlm.nih.gov/pubmed/32810156 http://dx.doi.org/10.1371/journal.pone.0237749 |
Ejemplares similares
-
MalFuzz: Coverage-guided fuzzing on deep learning-based malware classification model
por: Liu, Yuying, et al.
Publicado: (2022) -
Open source fuzzing tools
por: Evron, Gadi, et al.
Publicado: (2007) -
Effective Fuzzing: From Noise to SIGSEGV
por: Denbow, Shawn
Publicado: (2019) -
Fuzzing: brute force vulnerabilty discovery
por: Sutton, Michael, et al.
Publicado: (2007) -
RLTG: Multi-targets directed greybox fuzzing
por: He, Yubo, et al.
Publicado: (2023)