Cargando…
Machine learning-based mortality rate prediction using optimized hyper-parameter
OBJECTIVE AND BACKGROUND: The current scenario of the Pandemic of COVID-19 demands multi-channel investigations and predictions. A variety of prediction models are available in the literature. The majority of these models are based on extrapolating by the parameters related to the diseases, which ar...
Autores principales: | Khan, Y.A., Abbas, S.Z., Truong, Buu-Chau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434460/ https://www.ncbi.nlm.nih.gov/pubmed/32889405 http://dx.doi.org/10.1016/j.cmpb.2020.105704 |
Ejemplares similares
-
An effective hyper-parameter can increase the prediction accuracy in a single-step genetic evaluation
por: Neshat, Mehdi, et al.
Publicado: (2023) -
Exploring Parameter and Hyper-Parameter Spaces of Neuroscience Models on High Performance Computers With Learning to Learn
por: Yegenoglu, Alper, et al.
Publicado: (2022) -
Predicting the Optimal Input Parameters for the Desired Print Quality Using Machine Learning
por: Ratnavel, Rajalakshmi, et al.
Publicado: (2022) -
An Automatic-Segmentation- and Hyper-Parameter-Optimization-Based Artificial Rabbits Algorithm for Leaf Disease Classification
por: Khan, Ihtiram Raza, et al.
Publicado: (2023) -
Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection
por: Dahiya, Neeraj, et al.
Publicado: (2023)