Cargando…
DNER promotes epithelial–mesenchymal transition and prevents chemosensitivity through the Wnt/β-catenin pathway in breast cancer
Breast cancer (BC) is the most common malignant tumour in women worldwide, and one of the most common fatal tumours in women. Delta/Notch-like epidermal growth factor (EGF)-related receptor (DNER) is a transmembrane protein involved in the development of tumours. The role and potential mechanism of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434780/ https://www.ncbi.nlm.nih.gov/pubmed/32811806 http://dx.doi.org/10.1038/s41419-020-02903-1 |
Sumario: | Breast cancer (BC) is the most common malignant tumour in women worldwide, and one of the most common fatal tumours in women. Delta/Notch-like epidermal growth factor (EGF)-related receptor (DNER) is a transmembrane protein involved in the development of tumours. The role and potential mechanism of DNER in epithelial–mesenchymal transition (EMT) and apoptosis in BC are not fully understood. We find that DNER is overexpressed in BC tissue, especially triple-negative breast cancer (TNBC) tissue, and related to the survival of BC and TNBC patients. In addition, DNER regulates cell EMT to enhance the proliferation and metastasis of BC cells via the Wnt/β-catenin pathway in vitro and in vivo. Moreover, the expression levels of β-catenin and DNER in BD tissue are positively correlated. The simultaneously high expression of DNER and β-catenin contributes to poor prognosis in BC patients. Finally, DNER protects BC cells from epirubicin-induced growth inhibition and apoptosis via the Wnt/β-catenin pathway. In conclusion, these results suggest that DNER induces EMT and prevents apoptosis by the Wnt/β-catenin pathway, ultimately promoting the malignant progression of BC. In conclusion, our study demonstrates that DNER functions as an oncogene and potentially valuable therapeutic target for BC. |
---|