Cargando…

Male Sterility is linked to the Flavonoid Biosynthesis Pathways in Prunus mira

Sterility plays an important role in plant adaptation and evolution and has contributed to the development of high yielding crop hybrids. We used the widely targeted metabolomics profiling to survey the metabolites and biological pathways associated with male sterility in Prunus mira by comparing fl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shanshan, Pingcuo, Gesang, Ying, Hong, Zhao, Fan, Cui, Yongning, Zeng, Xiuli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434953/
https://www.ncbi.nlm.nih.gov/pubmed/32831517
http://dx.doi.org/10.6026/97320630016363
Descripción
Sumario:Sterility plays an important role in plant adaptation and evolution and has contributed to the development of high yielding crop hybrids. We used the widely targeted metabolomics profiling to survey the metabolites and biological pathways associated with male sterility in Prunus mira by comparing flowers from fertile and sterile trees. Male sterile flowers displayed abnormal stamen, uncolored anthers, and distorted and shrunken pollen grains with an apparent lack of turgidity. We report 566 metabolites in six flower samples and 140 differentially accumulated metabolites (DAMs) between both flower types. Most of the DAMs belong to the phenyl propanoid biosynthesis pathway, particularly flavonoid, flavone and flavonol biosynthesis pathways, implying that alterations in these key pathways link to male sterility in P. mira. The known link between low levels of flavonoid metabolites, weak expression levels of several structural genes from the phenyl propanoid biosynthesis pathway and hyper accumulation of reactive oxygen species were highlighted for understanding the underlying mechanism leading to the abnormal or aborted pollen grains observed in the sterile flowers. Data on the molecular mechanism of male sterility in Prunus mira will facilitate further in-depth investigations on this important agronomic and ecological trait.