Cargando…

22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer

Simultaneously achieving high efficiency and high durability in perovskite solar cells is a critical step toward the commercialization of this technology. Inverted perovskite photovoltaic (IP‐PV) cells incorporating robust and low levelized‐cost‐of‐energy (LCOE) buffer layers are supposed to be a pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiaowen, Liu, Chang, Zhang, Zhiyong, Jiang, Xiao‐Fang, Garcia, Juan, Sheehan, Colton, Shui, Lingling, Priya, Shashank, Zhou, Guofu, Zhang, Sen, Wang, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435259/
https://www.ncbi.nlm.nih.gov/pubmed/32832371
http://dx.doi.org/10.1002/advs.202001285
_version_ 1783572302757101568
author Hu, Xiaowen
Liu, Chang
Zhang, Zhiyong
Jiang, Xiao‐Fang
Garcia, Juan
Sheehan, Colton
Shui, Lingling
Priya, Shashank
Zhou, Guofu
Zhang, Sen
Wang, Kai
author_facet Hu, Xiaowen
Liu, Chang
Zhang, Zhiyong
Jiang, Xiao‐Fang
Garcia, Juan
Sheehan, Colton
Shui, Lingling
Priya, Shashank
Zhou, Guofu
Zhang, Sen
Wang, Kai
author_sort Hu, Xiaowen
collection PubMed
description Simultaneously achieving high efficiency and high durability in perovskite solar cells is a critical step toward the commercialization of this technology. Inverted perovskite photovoltaic (IP‐PV) cells incorporating robust and low levelized‐cost‐of‐energy (LCOE) buffer layers are supposed to be a promising solution to this target. However, insufficient inventory of materials for back‐electrode buffers substantially limits the development of IP‐PV. Herein, a composite consisting of 1D cation‐doped TiO(2) brookite nanorod (NR) embedded by 0D fullerene is investigated as a top modification buffer for IP‐PV. The cathode buffer is constructed by introducing fullerene to fill the interstitial space of the TiO(2) NR matrix. Meanwhile, cations of transition metal Co or Fe are doped into the TiO(2) NR to further tune the electronic property. Such a top buffer exhibits multifold advantages, including improved film uniformity, enhanced electron extraction and transfer ability, better energy level matching with perovskite, and stronger moisture resistance. Correspondingly, the resultant IP‐PV displays an efficiency exceeding 22% with a 22‐fold prolonged working lifetime. The strategy not only provides an essential addition to the material inventory for top electron buffers by introducing the 0D:1D composite concept, but also opens a new avenue to optimize perovskite PVs with desirable properties.
format Online
Article
Text
id pubmed-7435259
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-74352592020-08-20 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer Hu, Xiaowen Liu, Chang Zhang, Zhiyong Jiang, Xiao‐Fang Garcia, Juan Sheehan, Colton Shui, Lingling Priya, Shashank Zhou, Guofu Zhang, Sen Wang, Kai Adv Sci (Weinh) Communications Simultaneously achieving high efficiency and high durability in perovskite solar cells is a critical step toward the commercialization of this technology. Inverted perovskite photovoltaic (IP‐PV) cells incorporating robust and low levelized‐cost‐of‐energy (LCOE) buffer layers are supposed to be a promising solution to this target. However, insufficient inventory of materials for back‐electrode buffers substantially limits the development of IP‐PV. Herein, a composite consisting of 1D cation‐doped TiO(2) brookite nanorod (NR) embedded by 0D fullerene is investigated as a top modification buffer for IP‐PV. The cathode buffer is constructed by introducing fullerene to fill the interstitial space of the TiO(2) NR matrix. Meanwhile, cations of transition metal Co or Fe are doped into the TiO(2) NR to further tune the electronic property. Such a top buffer exhibits multifold advantages, including improved film uniformity, enhanced electron extraction and transfer ability, better energy level matching with perovskite, and stronger moisture resistance. Correspondingly, the resultant IP‐PV displays an efficiency exceeding 22% with a 22‐fold prolonged working lifetime. The strategy not only provides an essential addition to the material inventory for top electron buffers by introducing the 0D:1D composite concept, but also opens a new avenue to optimize perovskite PVs with desirable properties. John Wiley and Sons Inc. 2020-07-02 /pmc/articles/PMC7435259/ /pubmed/32832371 http://dx.doi.org/10.1002/advs.202001285 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Hu, Xiaowen
Liu, Chang
Zhang, Zhiyong
Jiang, Xiao‐Fang
Garcia, Juan
Sheehan, Colton
Shui, Lingling
Priya, Shashank
Zhou, Guofu
Zhang, Sen
Wang, Kai
22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer
title 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer
title_full 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer
title_fullStr 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer
title_full_unstemmed 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer
title_short 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer
title_sort 22% efficiency inverted perovskite photovoltaic cell using cation‐doped brookite tio(2) top buffer
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435259/
https://www.ncbi.nlm.nih.gov/pubmed/32832371
http://dx.doi.org/10.1002/advs.202001285
work_keys_str_mv AT huxiaowen 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT liuchang 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT zhangzhiyong 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT jiangxiaofang 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT garciajuan 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT sheehancolton 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT shuilingling 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT priyashashank 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT zhouguofu 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT zhangsen 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer
AT wangkai 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer