Cargando…
22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer
Simultaneously achieving high efficiency and high durability in perovskite solar cells is a critical step toward the commercialization of this technology. Inverted perovskite photovoltaic (IP‐PV) cells incorporating robust and low levelized‐cost‐of‐energy (LCOE) buffer layers are supposed to be a pr...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435259/ https://www.ncbi.nlm.nih.gov/pubmed/32832371 http://dx.doi.org/10.1002/advs.202001285 |
_version_ | 1783572302757101568 |
---|---|
author | Hu, Xiaowen Liu, Chang Zhang, Zhiyong Jiang, Xiao‐Fang Garcia, Juan Sheehan, Colton Shui, Lingling Priya, Shashank Zhou, Guofu Zhang, Sen Wang, Kai |
author_facet | Hu, Xiaowen Liu, Chang Zhang, Zhiyong Jiang, Xiao‐Fang Garcia, Juan Sheehan, Colton Shui, Lingling Priya, Shashank Zhou, Guofu Zhang, Sen Wang, Kai |
author_sort | Hu, Xiaowen |
collection | PubMed |
description | Simultaneously achieving high efficiency and high durability in perovskite solar cells is a critical step toward the commercialization of this technology. Inverted perovskite photovoltaic (IP‐PV) cells incorporating robust and low levelized‐cost‐of‐energy (LCOE) buffer layers are supposed to be a promising solution to this target. However, insufficient inventory of materials for back‐electrode buffers substantially limits the development of IP‐PV. Herein, a composite consisting of 1D cation‐doped TiO(2) brookite nanorod (NR) embedded by 0D fullerene is investigated as a top modification buffer for IP‐PV. The cathode buffer is constructed by introducing fullerene to fill the interstitial space of the TiO(2) NR matrix. Meanwhile, cations of transition metal Co or Fe are doped into the TiO(2) NR to further tune the electronic property. Such a top buffer exhibits multifold advantages, including improved film uniformity, enhanced electron extraction and transfer ability, better energy level matching with perovskite, and stronger moisture resistance. Correspondingly, the resultant IP‐PV displays an efficiency exceeding 22% with a 22‐fold prolonged working lifetime. The strategy not only provides an essential addition to the material inventory for top electron buffers by introducing the 0D:1D composite concept, but also opens a new avenue to optimize perovskite PVs with desirable properties. |
format | Online Article Text |
id | pubmed-7435259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-74352592020-08-20 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer Hu, Xiaowen Liu, Chang Zhang, Zhiyong Jiang, Xiao‐Fang Garcia, Juan Sheehan, Colton Shui, Lingling Priya, Shashank Zhou, Guofu Zhang, Sen Wang, Kai Adv Sci (Weinh) Communications Simultaneously achieving high efficiency and high durability in perovskite solar cells is a critical step toward the commercialization of this technology. Inverted perovskite photovoltaic (IP‐PV) cells incorporating robust and low levelized‐cost‐of‐energy (LCOE) buffer layers are supposed to be a promising solution to this target. However, insufficient inventory of materials for back‐electrode buffers substantially limits the development of IP‐PV. Herein, a composite consisting of 1D cation‐doped TiO(2) brookite nanorod (NR) embedded by 0D fullerene is investigated as a top modification buffer for IP‐PV. The cathode buffer is constructed by introducing fullerene to fill the interstitial space of the TiO(2) NR matrix. Meanwhile, cations of transition metal Co or Fe are doped into the TiO(2) NR to further tune the electronic property. Such a top buffer exhibits multifold advantages, including improved film uniformity, enhanced electron extraction and transfer ability, better energy level matching with perovskite, and stronger moisture resistance. Correspondingly, the resultant IP‐PV displays an efficiency exceeding 22% with a 22‐fold prolonged working lifetime. The strategy not only provides an essential addition to the material inventory for top electron buffers by introducing the 0D:1D composite concept, but also opens a new avenue to optimize perovskite PVs with desirable properties. John Wiley and Sons Inc. 2020-07-02 /pmc/articles/PMC7435259/ /pubmed/32832371 http://dx.doi.org/10.1002/advs.202001285 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Hu, Xiaowen Liu, Chang Zhang, Zhiyong Jiang, Xiao‐Fang Garcia, Juan Sheehan, Colton Shui, Lingling Priya, Shashank Zhou, Guofu Zhang, Sen Wang, Kai 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer |
title | 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer |
title_full | 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer |
title_fullStr | 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer |
title_full_unstemmed | 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer |
title_short | 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO(2) Top Buffer |
title_sort | 22% efficiency inverted perovskite photovoltaic cell using cation‐doped brookite tio(2) top buffer |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435259/ https://www.ncbi.nlm.nih.gov/pubmed/32832371 http://dx.doi.org/10.1002/advs.202001285 |
work_keys_str_mv | AT huxiaowen 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT liuchang 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT zhangzhiyong 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT jiangxiaofang 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT garciajuan 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT sheehancolton 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT shuilingling 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT priyashashank 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT zhouguofu 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT zhangsen 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer AT wangkai 22efficiencyinvertedperovskitephotovoltaiccellusingcationdopedbrookitetio2topbuffer |