Cargando…

Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome

Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1(−/y) mouse hippocampus, with in...

Descripción completa

Detalles Bibliográficos
Autores principales: Booker, Sam A., Simões de Oliveira, Laura, Anstey, Natasha J., Kozic, Zrinko, Dando, Owen R., Jackson, Adam D., Baxter, Paul S., Isom, Lori L., Sherman, Diane L., Hardingham, Giles E., Brophy, Peter J., Wyllie, David J.A., Kind, Peter C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435362/
https://www.ncbi.nlm.nih.gov/pubmed/32783927
http://dx.doi.org/10.1016/j.celrep.2020.107988
_version_ 1783572321421754368
author Booker, Sam A.
Simões de Oliveira, Laura
Anstey, Natasha J.
Kozic, Zrinko
Dando, Owen R.
Jackson, Adam D.
Baxter, Paul S.
Isom, Lori L.
Sherman, Diane L.
Hardingham, Giles E.
Brophy, Peter J.
Wyllie, David J.A.
Kind, Peter C.
author_facet Booker, Sam A.
Simões de Oliveira, Laura
Anstey, Natasha J.
Kozic, Zrinko
Dando, Owen R.
Jackson, Adam D.
Baxter, Paul S.
Isom, Lori L.
Sherman, Diane L.
Hardingham, Giles E.
Brophy, Peter J.
Wyllie, David J.A.
Kind, Peter C.
author_sort Booker, Sam A.
collection PubMed
description Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1(−/y) mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1(−/y) neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1(−/y) mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.
format Online
Article
Text
id pubmed-7435362
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-74353622020-08-21 Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome Booker, Sam A. Simões de Oliveira, Laura Anstey, Natasha J. Kozic, Zrinko Dando, Owen R. Jackson, Adam D. Baxter, Paul S. Isom, Lori L. Sherman, Diane L. Hardingham, Giles E. Brophy, Peter J. Wyllie, David J.A. Kind, Peter C. Cell Rep Article Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1(−/y) mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1(−/y) neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1(−/y) mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons. Cell Press 2020-08-11 /pmc/articles/PMC7435362/ /pubmed/32783927 http://dx.doi.org/10.1016/j.celrep.2020.107988 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Booker, Sam A.
Simões de Oliveira, Laura
Anstey, Natasha J.
Kozic, Zrinko
Dando, Owen R.
Jackson, Adam D.
Baxter, Paul S.
Isom, Lori L.
Sherman, Diane L.
Hardingham, Giles E.
Brophy, Peter J.
Wyllie, David J.A.
Kind, Peter C.
Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome
title Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome
title_full Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome
title_fullStr Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome
title_full_unstemmed Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome
title_short Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome
title_sort input-output relationship of ca1 pyramidal neurons reveals intact homeostatic mechanisms in a mouse model of fragile x syndrome
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435362/
https://www.ncbi.nlm.nih.gov/pubmed/32783927
http://dx.doi.org/10.1016/j.celrep.2020.107988
work_keys_str_mv AT bookersama inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT simoesdeoliveiralaura inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT ansteynatashaj inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT koziczrinko inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT dandoowenr inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT jacksonadamd inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT baxterpauls inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT isomloril inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT shermandianel inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT hardinghamgilese inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT brophypeterj inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT wylliedavidja inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome
AT kindpeterc inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome