Cargando…
Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome
Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1(−/y) mouse hippocampus, with in...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435362/ https://www.ncbi.nlm.nih.gov/pubmed/32783927 http://dx.doi.org/10.1016/j.celrep.2020.107988 |
_version_ | 1783572321421754368 |
---|---|
author | Booker, Sam A. Simões de Oliveira, Laura Anstey, Natasha J. Kozic, Zrinko Dando, Owen R. Jackson, Adam D. Baxter, Paul S. Isom, Lori L. Sherman, Diane L. Hardingham, Giles E. Brophy, Peter J. Wyllie, David J.A. Kind, Peter C. |
author_facet | Booker, Sam A. Simões de Oliveira, Laura Anstey, Natasha J. Kozic, Zrinko Dando, Owen R. Jackson, Adam D. Baxter, Paul S. Isom, Lori L. Sherman, Diane L. Hardingham, Giles E. Brophy, Peter J. Wyllie, David J.A. Kind, Peter C. |
author_sort | Booker, Sam A. |
collection | PubMed |
description | Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1(−/y) mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1(−/y) neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1(−/y) mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons. |
format | Online Article Text |
id | pubmed-7435362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-74353622020-08-21 Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome Booker, Sam A. Simões de Oliveira, Laura Anstey, Natasha J. Kozic, Zrinko Dando, Owen R. Jackson, Adam D. Baxter, Paul S. Isom, Lori L. Sherman, Diane L. Hardingham, Giles E. Brophy, Peter J. Wyllie, David J.A. Kind, Peter C. Cell Rep Article Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1(−/y) mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1(−/y) neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1(−/y) mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons. Cell Press 2020-08-11 /pmc/articles/PMC7435362/ /pubmed/32783927 http://dx.doi.org/10.1016/j.celrep.2020.107988 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Booker, Sam A. Simões de Oliveira, Laura Anstey, Natasha J. Kozic, Zrinko Dando, Owen R. Jackson, Adam D. Baxter, Paul S. Isom, Lori L. Sherman, Diane L. Hardingham, Giles E. Brophy, Peter J. Wyllie, David J.A. Kind, Peter C. Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome |
title | Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome |
title_full | Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome |
title_fullStr | Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome |
title_full_unstemmed | Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome |
title_short | Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome |
title_sort | input-output relationship of ca1 pyramidal neurons reveals intact homeostatic mechanisms in a mouse model of fragile x syndrome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435362/ https://www.ncbi.nlm.nih.gov/pubmed/32783927 http://dx.doi.org/10.1016/j.celrep.2020.107988 |
work_keys_str_mv | AT bookersama inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT simoesdeoliveiralaura inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT ansteynatashaj inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT koziczrinko inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT dandoowenr inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT jacksonadamd inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT baxterpauls inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT isomloril inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT shermandianel inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT hardinghamgilese inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT brophypeterj inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT wylliedavidja inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome AT kindpeterc inputoutputrelationshipofca1pyramidalneuronsrevealsintacthomeostaticmechanismsinamousemodeloffragilexsyndrome |