Cargando…
TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation
The high human labor demand involved in collecting paired medical imaging data severely impedes the application of deep learning methods to medical image processing tasks such as tumor segmentation. The situation is further worsened when collecting multi-modal image pairs. However, this issue can be...
Autores principales: | Li, Qingyun, Yu, Zhibin, Wang, Yubo, Zheng, Haiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435374/ https://www.ncbi.nlm.nih.gov/pubmed/32731598 http://dx.doi.org/10.3390/s20154203 |
Ejemplares similares
-
Brain Tumor Segmentation via Multi-Modalities Interactive Feature Learning
por: Wang, Bo, et al.
Publicado: (2021) -
Overview of Multi-Modal Brain Tumor MR Image Segmentation
por: Zhang, Wenyin, et al.
Publicado: (2021) -
Deep fusion of multi-modal features for brain tumor image segmentation
por: Zhang, Guying, et al.
Publicado: (2023) -
Data Augmentation for Brain-Tumor Segmentation: A Review
por: Nalepa, Jakub, et al.
Publicado: (2019) -
Multi-Modality Microscopy Image Style Augmentation for Nuclei Segmentation
por: Liu, Ye, et al.
Publicado: (2022)