Cargando…
Functional Coatings for Orthodontic Archwires—A Review
In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435379/ https://www.ncbi.nlm.nih.gov/pubmed/32707959 http://dx.doi.org/10.3390/ma13153257 |
Sumario: | In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO(2) applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time. |
---|