Cargando…
Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments
Cardiorespiratory (CR) signals are crucial vital signs for fitness condition tracking, medical diagnosis, and athlete performance evaluation. Monitoring such signals in real-life settings is among the most widespread applications of wearable computing. We investigate how miniaturized barometers can...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435382/ https://www.ncbi.nlm.nih.gov/pubmed/32751385 http://dx.doi.org/10.3390/s20154234 |
_version_ | 1783572326590185472 |
---|---|
author | Zhou, Bo Baucells Costa, Alejandro Lukowicz, Paul |
author_facet | Zhou, Bo Baucells Costa, Alejandro Lukowicz, Paul |
author_sort | Zhou, Bo |
collection | PubMed |
description | Cardiorespiratory (CR) signals are crucial vital signs for fitness condition tracking, medical diagnosis, and athlete performance evaluation. Monitoring such signals in real-life settings is among the most widespread applications of wearable computing. We investigate how miniaturized barometers can be used to perform accurate spirometry in a wearable system that is built on off-the-shelf training masks often used by athletes as a training aid. We perform an evaluation where differential barometric pressure sensors are compared concurrently with a digital spirometer, during an experimental setting of clinical forced vital capacity (FVC) test procedures with 20 participants. The relationship between the two instruments is derived by mathematical modeling first, then by various regression methods from experiment data. The results show that the error of FVC vital values between the two instruments can be as low as 2∼3%. Beyond clinical tests, the method can also measure continuous tidal breathing air volumes with a 1∼3% error margin. Overall, we conclude that barometers with millimeter footprints embedded in face mask apparel can perform similarly to a digital spirometer to monitor breathing airflow and volume in pulmonary function tests. |
format | Online Article Text |
id | pubmed-7435382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74353822020-08-28 Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments Zhou, Bo Baucells Costa, Alejandro Lukowicz, Paul Sensors (Basel) Article Cardiorespiratory (CR) signals are crucial vital signs for fitness condition tracking, medical diagnosis, and athlete performance evaluation. Monitoring such signals in real-life settings is among the most widespread applications of wearable computing. We investigate how miniaturized barometers can be used to perform accurate spirometry in a wearable system that is built on off-the-shelf training masks often used by athletes as a training aid. We perform an evaluation where differential barometric pressure sensors are compared concurrently with a digital spirometer, during an experimental setting of clinical forced vital capacity (FVC) test procedures with 20 participants. The relationship between the two instruments is derived by mathematical modeling first, then by various regression methods from experiment data. The results show that the error of FVC vital values between the two instruments can be as low as 2∼3%. Beyond clinical tests, the method can also measure continuous tidal breathing air volumes with a 1∼3% error margin. Overall, we conclude that barometers with millimeter footprints embedded in face mask apparel can perform similarly to a digital spirometer to monitor breathing airflow and volume in pulmonary function tests. MDPI 2020-07-29 /pmc/articles/PMC7435382/ /pubmed/32751385 http://dx.doi.org/10.3390/s20154234 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhou, Bo Baucells Costa, Alejandro Lukowicz, Paul Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments |
title | Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments |
title_full | Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments |
title_fullStr | Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments |
title_full_unstemmed | Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments |
title_short | Accurate Spirometry with Integrated Barometric Sensors in Face-Worn Garments |
title_sort | accurate spirometry with integrated barometric sensors in face-worn garments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435382/ https://www.ncbi.nlm.nih.gov/pubmed/32751385 http://dx.doi.org/10.3390/s20154234 |
work_keys_str_mv | AT zhoubo accuratespirometrywithintegratedbarometricsensorsinfaceworngarments AT baucellscostaalejandro accuratespirometrywithintegratedbarometricsensorsinfaceworngarments AT lukowiczpaul accuratespirometrywithintegratedbarometricsensorsinfaceworngarments |