Cargando…
Reinforcement Learning-Enabled Cross-Layer Optimization for Low-Power and Lossy Networks under Heterogeneous Traffic Patterns
The next generation of the Internet of Things (IoT) networks is expected to handle a massive scale of sensor deployment with radically heterogeneous traffic applications, which leads to a congested network, calling for new mechanisms to improve network efficiency. Existing protocols are based on sim...
Autores principales: | Musaddiq, Arslan, Nain, Zulqar, Ahmad Qadri, Yazdan, Ali, Rashid, Kim, Sung Won |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435403/ https://www.ncbi.nlm.nih.gov/pubmed/32722645 http://dx.doi.org/10.3390/s20154158 |
Ejemplares similares
-
Preparing Wi-Fi 7 for Healthcare Internet-of-Things
por: Qadri, Yazdan Ahmad, et al.
Publicado: (2022) -
Multistability and anomalies in oscillator models of lossy power grids
por: Delabays, Robin, et al.
Publicado: (2022) -
A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment
por: Freschi, Valerio, et al.
Publicado: (2012) -
Lossy transmission lines
por: Gardiol Fred E
Publicado: (1987) -
The evolution of lossy compression
por: Marzen, Sarah E., et al.
Publicado: (2017)