Cargando…
Research on Image Reconstruction of Compressed Sensing Based on a Multi-Feature Residual Network
In order to solve the problem of how to quickly and accurately obtain crop images during crop growth monitoring, this paper proposes a deep compressed sensing image reconstruction method based on a multi-feature residual network. In this method, the initial reconstructed image obtained by linear map...
Autores principales: | Nan, Ruili, Sun, Guiling, Wang, Zhihong, Ren, Xiangnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435483/ https://www.ncbi.nlm.nih.gov/pubmed/32731604 http://dx.doi.org/10.3390/s20154202 |
Ejemplares similares
-
Fully Learnable Model for Task-Driven Image Compressed Sensing
por: Zheng, Bowen, et al.
Publicado: (2021) -
Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain
por: Ouchi, Shohei, et al.
Publicado: (2020) -
A Hybrid Residual Attention Convolutional Neural Network for Compressed Sensing Magnetic Resonance Image Reconstruction
por: Hossain, Md. Biddut, et al.
Publicado: (2023) -
Dual-Channel Reconstruction Network for Image Compressive Sensing
por: Zhang, Zhongqiang, et al.
Publicado: (2019) -
Extra Proximal-Gradient Network with Learned Regularization for Image Compressive Sensing Reconstruction
por: Zhang, Qingchao, et al.
Publicado: (2022)