Cargando…
A Pilot Study of Multi-Input Recurrent Neural Networks for Drug-Kinase Binding Prediction
The use of virtual drug screening can be beneficial to research teams, enabling them to narrow down potentially useful compounds for further study. A variety of virtual screening methods have been developed, typically with machine learning classifiers at the center of their design. In the present st...
Autores principales: | Carpenter, Kristy, Pilozzi, Alexander, Huang, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435591/ https://www.ncbi.nlm.nih.gov/pubmed/32722290 http://dx.doi.org/10.3390/molecules25153372 |
Ejemplares similares
-
Dual-Input and Multi-Channel Convolutional Neural Network Model for Vehicle Speed Prediction
por: Xing, Jiaming, et al.
Publicado: (2021) -
Neural Network-Based Decoding Input Stimulus Data Based on Recurrent Neural Network Neural Activity Pattern
por: Bartsev, S. I., et al.
Publicado: (2022) -
Multi-Input Deep Convolutional Neural Network Model for Short-Term Power Prediction of Photovoltaics
por: Zhang, Huimin, et al.
Publicado: (2022) -
Recurrent Neural Network for Predicting Transcription Factor Binding Sites
por: Shen, Zhen, et al.
Publicado: (2018) -
Multi input multi output neural population encoding
por: Lazar, Aurel A, et al.
Publicado: (2007)