Cargando…
Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification
The scarcity of labelled time-series data can hinder a proper training of deep learning models. This is especially relevant for the growing field of ubiquitous computing, where data coming from wearable devices have to be analysed using pattern recognition techniques to provide meaningful applicatio...
Autores principales: | Li, Frédéric, Shirahama, Kimiaki, Nisar, Muhammad Adeel, Huang, Xinyu, Grzegorzek, Marcin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435596/ https://www.ncbi.nlm.nih.gov/pubmed/32751855 http://dx.doi.org/10.3390/s20154271 |
Ejemplares similares
-
Rank Pooling Approach for Wearable Sensor-Based ADLs Recognition
por: Nisar, Muhammad Adeel, et al.
Publicado: (2020) -
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
por: Li, Frédéric, et al.
Publicado: (2018) -
A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors
por: Nisar, Muhammad Adeel, et al.
Publicado: (2023) -
Sleep Stage Classification in Children Using Self-Attention and Gaussian Noise Data Augmentation
por: Huang, Xinyu, et al.
Publicado: (2023) -
SenseHunger: Machine Learning Approach to Hunger Detection Using Wearable Sensors
por: Irshad, Muhammad Tausif, et al.
Publicado: (2022)