Cargando…

Energy Versus Throughput Optimisation for Machine-to-Machine Communication

We investigate the trade-off between energy usage and (packet) throughput in wireless mesh networks performing machine-to-machine communication. For this we provide a novel mixed-integer programming formulation to maximise the throughput while maintaining minimal energy usage, together with an effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Fitzgerald, Emma, Pióro, Michał, Tomaszewski, Artur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435706/
https://www.ncbi.nlm.nih.gov/pubmed/32722126
http://dx.doi.org/10.3390/s20154122
Descripción
Sumario:We investigate the trade-off between energy usage and (packet) throughput in wireless mesh networks performing machine-to-machine communication. For this we provide a novel mixed-integer programming formulation to maximise the throughput while maintaining minimal energy usage, together with an effective price-and-branch solution algorithm based on column generation. The resulting optimisation model is the main original contribution of the presented paper. We conducted a numerical study using network examples from 10 to 40 nodes, in which periodic sensor measurements are aggregated and disseminated to actuators. In almost all cases, we were able to achieve maximum throughput and minimum energy usage simultaneously, and in those cases where this was not possible, the costs incurred in one objective in order to achieve the other were typically low. The solution times for all network sizes were of the order of seconds, showing that our optimisation model is feasible to use in practice.