Cargando…
Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging
Optical sensors combined with machine learning algorithms have led to significant advances in seed science. These advances have facilitated the development of robust approaches, providing decision-making support in the seed industry related to the marketing of seed lots. In this study, a novel appro...
Autores principales: | de Medeiros, André Dantas, da Silva, Laércio Junio, Ribeiro, João Paulo Oliveira, Ferreira, Kamylla Calzolari, Rosas, Jorge Tadeu Fim, Santos, Abraão Almeida, da Silva, Clíssia Barboza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435829/ https://www.ncbi.nlm.nih.gov/pubmed/32756355 http://dx.doi.org/10.3390/s20154319 |
Ejemplares similares
-
Interactive machine learning for soybean seed and seedling quality classification
por: de Medeiros, André Dantas, et al.
Publicado: (2020) -
Classification Method for Viability Screening of Naturally Aged Watermelon Seeds Using FT-NIR Spectroscopy
por: Yasmin, Jannat, et al.
Publicado: (2019) -
Quantitative Analysis of Panax ginseng by FT-NIR Spectroscopy
por: Xu, Xin-fang, et al.
Publicado: (2014) -
Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
por: França-Silva, Fabiano, et al.
Publicado: (2020) -
Rapid Analysis of Deoxynivalenol in Durum Wheat by FT-NIR Spectroscopy
por: De Girolamo, Annalisa, et al.
Publicado: (2014)