Cargando…
A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram
Many works in recent years have been focused on developing a portable and less expensive system for diagnosing patients with obstructive sleep apnea (OSA), instead of using the inconvenient and expensive polysomnography (PSG). This study proposes a sleep apnea detection system based on a one-dimensi...
Autores principales: | Chang, Hung-Yu, Yeh, Cheng-Yu, Lee, Chung-Te, Lin, Chun-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435835/ https://www.ncbi.nlm.nih.gov/pubmed/32722630 http://dx.doi.org/10.3390/s20154157 |
Ejemplares similares
-
Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network
por: Yeh, Cheng-Yu, et al.
Publicado: (2022) -
A Deep Learning Framework for Automatic Sleep Apnea Classification Based on Empirical Mode Decomposition Derived from Single-Lead Electrocardiogram
por: Setiawan, Febryan, et al.
Publicado: (2022) -
Robustness of convolutional neural networks to physiological electrocardiogram noise
por: Venton, J., et al.
Publicado: (2021) -
Bioluminescence Tomography Based on One-Dimensional Convolutional Neural Networks
por: Yu, Jingjing, et al.
Publicado: (2021) -
Estimating critical values from electrocardiogram using a deep ordinal convolutional neural network
por: Wei, Guodong, et al.
Publicado: (2022)