Cargando…

Effect of Final Rolling Temperature on Microstructures and Mechanical Properties of AZ31 Alloy Sheets Prepared by Equal Channel Angular Rolling and Continuous Bending

The effects of final rolling temperature on the microstructures, texture and mechanical properties of AZ31 Mg alloy sheets prepared by equal channel angular rolling and continuous bending (ECAR-CB) were investigated. Extension twins {10–12} could be observed in the ECAR-CB deformed sheets. The incre...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Laixin, Liu, Lei, Hu, Li, Zhou, Tao, Yang, Mingbo, Lian, Yong, Zhang, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435862/
https://www.ncbi.nlm.nih.gov/pubmed/32731367
http://dx.doi.org/10.3390/ma13153346
Descripción
Sumario:The effects of final rolling temperature on the microstructures, texture and mechanical properties of AZ31 Mg alloy sheets prepared by equal channel angular rolling and continuous bending (ECAR-CB) were investigated. Extension twins {10–12} could be observed in the ECAR-CB deformed sheets. The increase in the number of {10–12} extension twins with increasing final rolling temperature might be attributed to the larger grain size and faster grain boundary migration. For all the ECAR-CB sheets at different final rolling temperatures, the deformation texture contains a basal texture component and a prismatic texture component, whereas the annealing recrystallization texture becomes a non-basal (pyramidal) texture with double peaks tilting away from normal direction (ND) to rolling direction (RD). With increasing final rolling temperature, the tilted angle of double peaks of annealing recrystallization non-basal texture increases. In addition, the plasticity and formability of ECAR-CB-A (ECAR-CB and then annealing) AZ31 Mg alloy sheets at room temperature can be improved by increasing the final rolling temperature.