Cargando…
Estimation of Traffic Stream Density Using Connected Vehicle Data: Linear and Nonlinear Filtering Approaches
The paper presents a nonlinear filtering approach to estimate the traffic stream density on signalized approaches based solely on connected vehicle (CV) data. Specifically, a particle filter (PF) is developed to produce reliable traffic density estimates using CV travel-time measurements. Traffic fl...
Autores principales: | Aljamal, Mohammad A., Abdelghaffar, Hossam M., Rakha, Hesham A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435886/ https://www.ncbi.nlm.nih.gov/pubmed/32707783 http://dx.doi.org/10.3390/s20154066 |
Ejemplares similares
-
Developing a Neural–Kalman Filtering Approach for Estimating Traffic Stream Density Using Probe Vehicle Data
por: Aljamal, Mohammad A., et al.
Publicado: (2019) -
A Novel Decentralized Game-Theoretic Adaptive Traffic Signal Controller: Large-Scale Testing
por: Abdelghaffar, Hossam M., et al.
Publicado: (2019) -
Adaptive Traffic Signal Control: Game-Theoretic Decentralized vs. Centralized Perimeter Control
por: Elouni, Maha, et al.
Publicado: (2021) -
A Mesoscopic Traffic Data Assimilation Framework for Vehicle Density Estimation on Urban Traffic Networks Based on Particle Filters
por: Wang, Song, et al.
Publicado: (2019) -
Connected Traffic Data Ontology (CTDO) for Intelligent Urban Traffic Systems Focused on Connected (Semi) Autonomous Vehicles
por: Viktorović, Miloš, et al.
Publicado: (2020)