Cargando…
VAE-Sim: A Novel Molecular Similarity Measure Based on a Variational Autoencoder
Molecular similarity is an elusive but core “unsupervised” cheminformatics concept, yet different “fingerprint” encodings of molecular structures return very different similarity values, even when using the same similarity metric. Each encoding may be of value when applied to other problems with obj...
Autores principales: | Samanta, Soumitra, O’Hagan, Steve, Swainston, Neil, Roberts, Timothy J., Kell, Douglas B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435890/ https://www.ncbi.nlm.nih.gov/pubmed/32751155 http://dx.doi.org/10.3390/molecules25153446 |
Ejemplares similares
-
DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach
por: Khemchandani, Yash, et al.
Publicado: (2020) -
Coupled VAE: Improved Accuracy and Robustness of a Variational Autoencoder
por: Cao, Shichen, et al.
Publicado: (2022) -
PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction
por: Dean, Scott N., et al.
Publicado: (2021) -
PriorVAE: encoding spatial priors with variational autoencoders for small-area estimation
por: Semenova, Elizaveta, et al.
Publicado: (2022) -
Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently
por: Kell, Douglas B., et al.
Publicado: (2020)