Cargando…
Khodakarami, H., et al., Prediction of the Levodopa Challenge Test in Parkinson’s Disease Using Data from a Wrist-Worn Sensor. Sensors 2019, 19, 5153
Autores principales: | Khodakarami, Hamid, Ricciardi, Lucia, Contarino, Maria Fiorella, Pahwa, Rajesh, Lyons, Kelly E., Geraedts, Victor J., Morgante, Francesca, Leake, Alison, Paviour, Dominic, Angelis, Andrea De, Horne, Malcolm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435905/ https://www.ncbi.nlm.nih.gov/pubmed/32727078 http://dx.doi.org/10.3390/s20154167 |
Ejemplares similares
-
Prediction of the Levodopa Challenge Test in Parkinson’s Disease Using Data from a Wrist-Worn Sensor
por: Khodakarami, Hamid, et al.
Publicado: (2019) -
Thermal sensors improve wrist-worn position tracking
por: Son, Jake J., et al.
Publicado: (2019) -
Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection
por: Kundinger, Thomas, et al.
Publicado: (2020) -
Optimizing sampling rate of wrist-worn optical sensors for physiologic monitoring
por: Bent, Brinnae, et al.
Publicado: (2020) -
Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors
por: Shoaib, Muhammad, et al.
Publicado: (2016)