Cargando…

Electric Current Waveform of the Injector as a Source of Diagnostic Information

The article discusses the method of evaluation of the fuel injector operation based on the observation of the electric current parameters, which were measured with a current transducer using the Hall effect, during the dosing process. This method relies on comparison of the electric current-related...

Descripción completa

Detalles Bibliográficos
Autores principales: Więcławski, Krzysztof, Mączak, Jędrzej, Szczurowski, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435933/
https://www.ncbi.nlm.nih.gov/pubmed/32722547
http://dx.doi.org/10.3390/s20154151
Descripción
Sumario:The article discusses the method of evaluation of the fuel injector operation based on the observation of the electric current parameters, which were measured with a current transducer using the Hall effect, during the dosing process. This method relies on comparison of the electric current-related values of the examined injector with the model characteristics, which are representing the properly functioning injector. A model of the fuel injector in the form of the electric current waveform that describes the changes in the electric current and voltage during its work is presented in this article. Complex equations describing the fuel injector model under discussion account for the characteristics of the current variations, with no damage-induced modifications. Due to these, the modeled electric current/voltage waveform mirrors the real conditions. The use of a mathematical model describing the voltage–current phenomena occurring during the injector operation allows determining the actual beginning and duration of the injection. The model can also be used to develop new injector diagnostic methods that can be implemented in the engine controller (ECU).