Cargando…
Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning
The digitization of materials is the prerequisite for accelerating product development. However, technologically, this is only beneficial when reliability is maintained. This requires comprehension of the microstructure-driven fatigue damage mechanisms across scales. A substantial fraction of the li...
Autores principales: | Thomas, Akhil, Durmaz, Ali Riza, Straub, Thomas, Eberl, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435935/ https://www.ncbi.nlm.nih.gov/pubmed/32722181 http://dx.doi.org/10.3390/ma13153298 |
Ejemplares similares
-
Materials fatigue prediction using graph neural networks on microstructure representations
por: Thomas, Akhil, et al.
Publicado: (2023) -
Author Correction: Materials fatigue prediction using graph neural networks on microstructure representations
por: Thomas, Akhil, et al.
Publicado: (2023) -
A deep learning approach for complex microstructure inference
por: Durmaz, Ali Riza, et al.
Publicado: (2021) -
A deep learning framework for automated detection and quantitative assessment of liver trauma
por: Farzaneh, Negar, et al.
Publicado: (2022) -
Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments
por: Van Valen, David A., et al.
Publicado: (2016)