Cargando…
Distribution Transformer Parameters Detection Based on Low-Frequency Noise, Machine Learning Methods, and Evolutionary Algorithm
The paper proposes a method of automatic detection of parameters of a distribution transformer (model, type, and power) from a distance, based on its low-frequency noise spectra. The spectra are registered by sensors and processed by a method based on evolutionary algorithms and machine learning. Th...
Autores principales: | Jancarczyk, Daniel, Bernaś, Marcin, Boczar, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435980/ https://www.ncbi.nlm.nih.gov/pubmed/32759655 http://dx.doi.org/10.3390/s20154332 |
Ejemplares similares
-
Classification of Low Frequency Signals Emitted by Power Transformers Using Sensors and Machine Learning Methods
por: Jancarczyk, Daniel, et al.
Publicado: (2019) -
RF noise at the synchroton frequency some remarks on scaling with machine parameters
por: Boussard, D
Publicado: (1984) -
Evolutionary machine learning techniques: algorithms and applications
por: Mirjalili, Seyedali, et al.
Publicado: (2019) -
An evolutionary machine learning algorithm for cardiovascular disease risk prediction
por: Ordikhani, Mohammad, et al.
Publicado: (2022) -
Low-Frequency Noise: Experiences from a Low-Frequency Noise Perceiving Population
por: Erdélyi, Kristina H., et al.
Publicado: (2023)