Cargando…

Dynamic Effects of Laser Action on Quasi-Two-Dimensional Dusty Plasma Systems of Charged Particles

We present the results of an experimental study of the behavior of a colloidal plasma system formed by copper-coated and uncoated polymer particles under the action of laser irradiation. A comparative study of particle velocity distribution profiles depending on the power of the pushing laser was co...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasiliev, Mikhail M., Petrov, Oleg F., Alekseevskaya, Anastasiya A., Ivanov, Alexander S., Vasilieva, Elena V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436052/
https://www.ncbi.nlm.nih.gov/pubmed/32722364
http://dx.doi.org/10.3390/molecules25153375
Descripción
Sumario:We present the results of an experimental study of the behavior of a colloidal plasma system formed by copper-coated and uncoated polymer particles under the action of laser irradiation. A comparative study of particle velocity distribution profiles depending on the power of the pushing laser was conducted. In the case of uncoated melamine-formaldehyde (MF) particles, we observed the well-known action of light pressure, causing shear stress in the colloidal plasma structure and leading to the occurrence of a laminar flow within the affected area. For the copper-coated MF particles, we revealed some additional patterns of behavior for the dust particles, i.e., kinetic temperature growth due to laser radiation absorption by the copper coating, as well as the appearance of chaotic particle motion. We believe that this happens due to the existence of defects in the coating, causing asymmetric heating of the particles, which in turn leads to chaotic deviations of the photophoretic force pushing the particles in different directions.