Cargando…
A Deep Learning Model for Fault Diagnosis with a Deep Neural Network and Feature Fusion on Multi-Channel Sensory Signals
Collecting multi-channel sensory signals is a feasible way to enhance performance in the diagnosis of mechanical equipment. In this article, a deep learning method combined with feature fusion on multi-channel sensory signals is proposed. First, a deep neural network (DNN) made up of auto-encoders i...
Autores principales: | Ye, Qing, Liu, Shaohu, Liu, Changhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436083/ https://www.ncbi.nlm.nih.gov/pubmed/32752215 http://dx.doi.org/10.3390/s20154300 |
Ejemplares similares
-
An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer
por: Ye, Qing, et al.
Publicado: (2021) -
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
por: Hoang, Duy Tang, et al.
Publicado: (2021) -
Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
por: Li, Hongmei, et al.
Publicado: (2019) -
A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery
por: Zhou, Funa, et al.
Publicado: (2018) -
An Intelligent Fault Diagnosis Based on Adversarial Generating Module and Semi-supervised Convolutional Neural Network
por: Ye, Qing, et al.
Publicado: (2022)