Cargando…
An Edge Based Multi-Agent Auto Communication Method for Traffic Light Control
With smart city infrastructures growing, the Internet of Things (IoT) has been widely used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control method based on reinforcement learning (RL) has expanded from one intersection to multiple intersections. In thi...
Autores principales: | Wu, Qiang, Wu, Jianqing, Shen, Jun, Yong, Binbin, Zhou, Qingguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436084/ https://www.ncbi.nlm.nih.gov/pubmed/32752055 http://dx.doi.org/10.3390/s20154291 |
Ejemplares similares
-
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
por: Wei, Wangyang, et al.
Publicado: (2019) -
A traffic light control method based on multi-agent deep reinforcement learning algorithm
por: Liu, Dongjiang, et al.
Publicado: (2023) -
TransMUSE: Transferable Traffic Prediction in MUlti-Service Edge Networks
por: Xu, Luyang, et al.
Publicado: (2023) -
Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management
por: Cruz-Piris, Luis, et al.
Publicado: (2018) -
Performance analysis of multi-channel and multi-traffic on wireless communication networks
por: Matsumoto, Yutaka, et al.
Publicado: (2002)