Cargando…
A Hybrid Feature Selection and Extraction Methods for Sleep Apnea Detection Using Bio-Signals
People with sleep apnea (SA) are at increased risk of having stroke and cardiovascular diseases. Polysomnography (PSG) is used to detect SA. This paper conducts feature selection from PSG signals and uses a support vector machine (SVM) to detect SA. To analyze SA, the Physionet Apnea Database was us...
Autores principales: | Li, Xilin, Ling, Sai Ho, Su, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436101/ https://www.ncbi.nlm.nih.gov/pubmed/32756353 http://dx.doi.org/10.3390/s20154323 |
Ejemplares similares
-
Sleep Apnea Detection Using Multi-Error-Reduction Classification System with Multiple Bio-Signals
por: Li, Xilin, et al.
Publicado: (2022) -
Poincaré plot analysis of cerebral blood flow signals: Feature extraction and classification methods for apnea detection
por: González, Carmen, et al.
Publicado: (2018) -
Obstructive sleep apnea
por: Ho, Matthew L., et al.
Publicado: (2011) -
Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea
por: Hemrajani, Prashant, et al.
Publicado: (2023) -
Simple and Autonomous Sleep Signal Processing System for the Detection of Obstructive Sleep Apneas
por: Moscoso-Barrera, William D., et al.
Publicado: (2022)