Cargando…
High-Resolution U-Net: Preserving Image Details for Cultivated Land Extraction
Accurate and efficient extraction of cultivated land data is of great significance for agricultural resource monitoring and national food security. Deep-learning-based classification of remote-sensing images overcomes the two difficulties of traditional learning methods (e.g., support vector machine...
Autores principales: | Xu, Wenna, Deng, Xinping, Guo, Shanxin, Chen, Jinsong, Sun, Luyi, Zheng, Xiaorou, Xiong, Yingfei, Shen, Yuan, Wang, Xiaoqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436155/ https://www.ncbi.nlm.nih.gov/pubmed/32707825 http://dx.doi.org/10.3390/s20154064 |
Ejemplares similares
-
Modality preserving U-Net for segmentation of multimodal medical images
por: Wu, Bingxuan, et al.
Publicado: (2023) -
Spatial Analysis of Cultivated Land Productivity, Site Condition and Cultivated Land Health at County Scale
por: Wu, Fengqiang, et al.
Publicado: (2022) -
Structure boundary-preserving U-Net for prostate ultrasound image segmentation
por: Bi, Hui, et al.
Publicado: (2022) -
Detail-Preserving Shape Unfolding
por: Liu, Bin, et al.
Publicado: (2021) -
Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details
por: Sekrecka, Aleksandra, et al.
Publicado: (2018)