Cargando…

Solar Blue Light Radiation Enhancement during Mid to Low Solar Elevation Periods under Cloud Affected Skies

Solar blue-violet wavelengths (380−455 nm) are at the high energy end of the visible spectrum; referred to as “high energy visible” (HEV). Both chronic and acute exposure to these wavelengths has been often highlighted as a cause for concern with respect to ocular health. The sun is the source of HE...

Descripción completa

Detalles Bibliográficos
Autores principales: Parisi, Alfio V., Igoe, Damien P., Amar, Abdurazaq, Downs, Nathan J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436162/
https://www.ncbi.nlm.nih.gov/pubmed/32717954
http://dx.doi.org/10.3390/s20154105
Descripción
Sumario:Solar blue-violet wavelengths (380−455 nm) are at the high energy end of the visible spectrum; referred to as “high energy visible” (HEV). Both chronic and acute exposure to these wavelengths has been often highlighted as a cause for concern with respect to ocular health. The sun is the source of HEV which reaches the Earth’s surface either directly or after scattering by the atmosphere and clouds. This research has investigated the effect of clouds on HEV for low solar elevation (solar zenith angles between 60° and 80°), simulating time periods when the opportunity for ocular exposure in global populations with office jobs is high during the early morning and late afternoon. The enhancement of “bluing” of the sky due to the influence of clouds was found to increase significantly with the amount of cloud. A method is presented for calculating HEV irradiance at sub-tropical latitudes from the more commonly measured global solar radiation (300–3000 nm) for all cases when clouds do and do not obscure the sun. The method; when applied to global solar radiation data correlates well with measured HEV within the solar zenith angle range 60° and 80° (R(2) = 0.82; mean bias error (MBE) = −1.62%, mean absolute bias error (MABE) = 10.3% and root mean square error (RMSE) = 14.6%). The technique can be used to develop repeatable HEV hazard evaluations for human ocular health applications