Cargando…
A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns
In this study, a novel hybrid surrogate machine learning model based on a feedforward neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize the weights and bias of...
Autores principales: | Nguyen, Quang Hung, Ly, Hai-Bang, Tran, Van Quan, Nguyen, Thuy-Anh, Phan, Viet-Hung, Le, Tien-Thinh, Pham, Binh Thai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436240/ https://www.ncbi.nlm.nih.gov/pubmed/32751914 http://dx.doi.org/10.3390/molecules25153486 |
Ejemplares similares
-
Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression
por: Nguyen, Hung Quang, et al.
Publicado: (2020) -
Parametric Investigation of Particle Swarm Optimization to Improve the Performance of the Adaptive Neuro-Fuzzy Inference System in Determining the Buckling Capacity of Circular Opening Steel Beams
por: Nguyen, Quang Hung, et al.
Publicado: (2020) -
Experimental Investigation on Behavior of Rectangular Concrete-Filled Tubular Columns Considering Diaphragms
por: Cha, Sang-Lyul, et al.
Publicado: (2020) -
Investigation of ANN architecture for predicting shear strength of fiber reinforcement bars concrete beams
por: Nguyen, Quang Hung, et al.
Publicado: (2021) -
Tangents and secants of algebraic varieties
por: Zak, F L
Publicado: (1993)