Cargando…

Adsorption of Phenol and Chlorophenols by HDTMA Modified Halloysite Nanotubes

The adsorption of phenol, 2-, 3-, 4-chlorophenol, 2-, 4-dichlorophenol and 2-, 4-, 6-trichloro-phenol on halloysite nanotubes modified with hexadecyltrimethylammonium bromide (HDTMA/halloysite nanocomposite) was investigated in this work by inverse liquid chromatography methods. Morphological and st...

Descripción completa

Detalles Bibliográficos
Autores principales: Słomkiewicz, Piotr, Szczepanik, Beata, Czaplicka, Marianna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436260/
https://www.ncbi.nlm.nih.gov/pubmed/32722297
http://dx.doi.org/10.3390/ma13153309
Descripción
Sumario:The adsorption of phenol, 2-, 3-, 4-chlorophenol, 2-, 4-dichlorophenol and 2-, 4-, 6-trichloro-phenol on halloysite nanotubes modified with hexadecyltrimethylammonium bromide (HDTMA/halloysite nanocomposite) was investigated in this work by inverse liquid chromatography methods. Morphological and structural changes of the HDTMA/halloysite nanocomposite were characterized by scanning and transmission electron microscopy (SEM, TEM), Fourier-transform infrared spectrometry (FT-IR) and the low-temperature nitrogen adsorption method. Specific surface energy heterogeneity profiles and acid base properties of halloysite and HDTMA/halloysite nanocomposite have been determined with the inverse gas chromatography method. Inverse liquid chromatography methods: the Peak Division and the Breakthrough Curves Methods were used in adsorption experiments to determine adsorption parameters. The obtained experimental adsorption data were well represented by the Langmuir multi-center adsorption model.