Cargando…
Analysis of key genes reveal lysine demethylase 5B promotes prostate cancer progression
Prostate cancer (PCa) is one of the most common types of cancer in males globally. However, the molecular mechanisms underlying PCa progression remain largely unclear. In the present study, Gene Expression Omnibus (GEO) datasets and datasets from The Cancer Genome Atlas (TCGA) were used to analyze t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436301/ https://www.ncbi.nlm.nih.gov/pubmed/32863895 http://dx.doi.org/10.3892/ol.2020.11923 |
Sumario: | Prostate cancer (PCa) is one of the most common types of cancer in males globally. However, the molecular mechanisms underlying PCa progression remain largely unclear. In the present study, Gene Expression Omnibus (GEO) datasets and datasets from The Cancer Genome Atlas (TCGA) were used to analyze the expression of lysine demethylase 5B (KDM5B) in PCa. Proliferation, cell cycle and migration assays were used to detect the functional roles of KDM5B. It was found KDM5B was upregulated in PCa tissues by analyzing GEO and TCGA datasets. KDM5B knockdown significantly suppressed proliferation and cell cycle progression in PCa cells. In additional, KDM5B knockdown inhibited PCa cell migration. By analyzing a TCGA dataset, KDM5B was found to be upregulated in patients at N1 stage compared with N0 stage PCa, in patients at T3+T4 stages compared with T2 stage and in patients with Gleason score ≥8 compared with those with score ≤7. Kaplan-Meier analysis revealed that higher expression of KDM5B was associated with shorter biochemical recurrence-free survival and overall survival time in patients with PCa. These results suggest that expression of KDM5B may serve as a biomarker to predict the outcome of PCa. |
---|