Cargando…

Data-Driven Analysis of Bicycle Sharing Systems as Public Transport Systems Based on a Trip Index Classification

Bicycle Sharing Systems (BSSs) are exponentially increasing in the urban mobility sector. They are traditionally conceived as a last-mile complement to the public transport system. In this paper, we demonstrate that BSSs can be seen as a public transport system in their own right. To do so, we build...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilby, Mark Richard, Vinagre Díaz, Juan José, Fernández Pozo, Rubén, Rodríguez González, Ana Belén, Vassallo, José Manuel, Sánchez Ávila, Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436302/
https://www.ncbi.nlm.nih.gov/pubmed/32748867
http://dx.doi.org/10.3390/s20154315
Descripción
Sumario:Bicycle Sharing Systems (BSSs) are exponentially increasing in the urban mobility sector. They are traditionally conceived as a last-mile complement to the public transport system. In this paper, we demonstrate that BSSs can be seen as a public transport system in their own right. To do so, we build a mathematical framework for the classification of BSS trips. Using trajectory information, we create the trip index, which characterizes the intrinsic purpose of the use of BSS as transport or leisure. The construction of the trip index required a specific analysis of the BSS shortest path, which cannot be directly calculated from the topology of the network given that cyclists can find shortcuts through traffic lights, pedestrian crossings, etc. to reduce the overall traveled distance. Adding a layer of complication to the problem, these shortcuts have a non-trivial existence in terms of being intermittent, or short lived. We applied the proposed methodology to empirical data from BiciMAD, the public BSS in Madrid (Spain). The obtained results show that the trip index correctly determines transport and leisure categories, which exhibit distinct statistical and operational features. Finally, we inferred the underlying BSS public transport network and show the fundamental trajectories traveled by users. Based on this analysis, we conclude that [Formula: see text] of BiciMAD’s use fall in the category of transport, which demonstrates our first statement.