Cargando…
IMPARO: inferring microbial interactions through parameter optimisation
BACKGROUND: Microbial Interaction Networks (MINs) provide important information for understanding bacterial communities. MINs can be inferred by examining microbial abundance profiles. Abundance profiles are often interpreted with the Lotka Volterra model in research. However existing research fails...
Autores principales: | Vidanaarachchi, Rajith, Shaw, Marnie, Tang, Sen-Lin, Halgamuge, Saman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436957/ https://www.ncbi.nlm.nih.gov/pubmed/32814564 http://dx.doi.org/10.1186/s12860-020-00269-y |
Ejemplares similares
-
ACC Education Today: Ancora Imparo (I Am Still Learning)
por: Poppas, Athena, et al.
Publicado: (2020) -
Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition
por: Saeed, Isaam, et al.
Publicado: (2012) -
Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes
por: Hameed, Pathima Nusrath, et al.
Publicado: (2017) -
ENVirT: inference of ecological characteristics of viruses from metagenomic data
por: Jayasundara, Duleepa, et al.
Publicado: (2019) -
Accurate reconstruction of viral quasispecies spectra through improved estimation of strain richness
por: Jayasundara, Duleepa, et al.
Publicado: (2015)