Cargando…
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
COVID-19, responsible of infecting billions of people and economy across the globe, requires detailed study of the trend it follows to develop adequate short-term prediction models for forecasting the number of future cases. In this perspective, it is possible to develop strategic planning in the pu...
Autores principales: | Shahid, Farah, Zameer, Aneela, Muneeb, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437542/ https://www.ncbi.nlm.nih.gov/pubmed/32839642 http://dx.doi.org/10.1016/j.chaos.2020.110212 |
Ejemplares similares
-
Prediction of outpatients with conjunctivitis in Xinjiang based on LSTM and GRU models
por: Wang, Yijia, et al.
Publicado: (2023) -
Attention based GRU-LSTM for software defect prediction
por: Munir, Hafiz Shahbaz, et al.
Publicado: (2021) -
Prediction of soil moisture using BiGRU-LSTM model with STL decomposition in Qinghai–Tibet Plateau
por: Zhao, Lufei, et al.
Publicado: (2023) -
Short-term solar energy forecasting: Integrated computational intelligence of LSTMs and GRU
por: Zameer, Aneela, et al.
Publicado: (2023) -
Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks
por: Mahjoub, Sameh, et al.
Publicado: (2022)