Cargando…
Producing Standardized Country-Level Immunization Delivery Unit Cost Estimates
BACKGROUND: To plan for the financial sustainability of immunization programs and make informed decisions to improve immunization coverage and equity, decision-makers need to know how much these programs cost beyond the cost of the vaccine. Non-vaccine delivery cost estimates can significantly influ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437655/ https://www.ncbi.nlm.nih.gov/pubmed/32596785 http://dx.doi.org/10.1007/s40273-020-00930-6 |
Sumario: | BACKGROUND: To plan for the financial sustainability of immunization programs and make informed decisions to improve immunization coverage and equity, decision-makers need to know how much these programs cost beyond the cost of the vaccine. Non-vaccine delivery cost estimates can significantly influence the cost-effectiveness estimates used to allocate resources at the country level. However, many low- and middle-income countries (LMICs) do not have immunization delivery unit cost estimates available, or have estimates that are uncertain, unreliable, or old. We undertook a Bayesian evidence synthesis to generate country-level estimates of immunization delivery unit costs for LMICs. METHODS: From a database of empirical immunization costing studies, we extracted estimates of the delivery cost per dose for routine childhood immunization services, excluding vaccine costs. A Bayesian meta-regression model was used to regress delivery cost per dose estimates, stratified by cost category, against a set of predictor variables including country-level [gross domestic product per capita, reported diphtheria-tetanus-pertussis third dose coverage (DTP3), population, and number of doses in the routine vaccination schedule] and study-level (study year, single antigen or programmatic cost per dose, and financial or economic cost) predictors. The fitted prediction model was used to generate standardized estimates of the routine immunization delivery cost per dose for each LMIC for 2009–2018. Alternative regression models were specified in sensitivity analyses. RESULTS: We estimated the prediction model using the results from 29 individual studies, covering 24 countries. The predicted economic cost per dose for routine delivery of childhood vaccines (2018 US dollars), not including the price of the vaccine, was $1.87 (95% uncertainty interval $0.64–4.38) across all LMICs. By individual cost category, the programmatic economic cost per dose for routine delivery of childhood vaccines was $0.74 ($0.26–1.70) for labor, $0.26 ($0.08–0.67) for supply chain, $0.22 ($0.06–0.57) for capital, and $0.65 ($0.20–1.66) for other service delivery costs. CONCLUSIONS: Accurate immunization delivery costs are necessary for assessing the cost-effectiveness and strategic planning needs of immunization programs. The cost estimates from this analysis provide a broad indication of immunization delivery costs that may be useful when accurate local data are unavailable. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s40273-020-00930-6) contains supplementary material, which is available to authorized users. |
---|