Cargando…
Visual perception of liquids: Insights from deep neural networks
Visually inferring material properties is crucial for many tasks, yet poses significant computational challenges for biological vision. Liquids and gels are particularly challenging due to their extreme variability and complex behaviour. We reasoned that measuring and modelling viscosity perception...
Autores principales: | van Assen, Jan Jaap R., Nishida, Shin’ya, Fleming, Roland W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437867/ https://www.ncbi.nlm.nih.gov/pubmed/32813688 http://dx.doi.org/10.1371/journal.pcbi.1008018 |
Ejemplares similares
-
Visual Features in the Perception of Liquids
por: van Assen, Jan Jaap R., et al.
Publicado: (2018) -
Gloss perception: Searching for a deep neural network that behaves like humans
por: Prokott, Konrad Eugen, et al.
Publicado: (2021) -
Neural Correlates of the Time Marker for the Perception of Event Timing
por: Amano, Kaoru, et al.
Publicado: (2016) -
Perception Science in the Age of Deep Neural Networks
por: VanRullen, Rufin
Publicado: (2017) -
Guiding visual attention in deep convolutional neural networks based on human eye movements
por: van Dyck, Leonard Elia, et al.
Publicado: (2022)