Cargando…

Flood inundation mapping- Kerala 2018; Harnessing the power of SAR, automatic threshold detection method and Google Earth Engine

Flood inundation maps provide valuable information towards flood risk preparedness, management, communication, response, and mitigation at the time of disaster, and can be developed by harnessing the power of satellite imagery. In the present study, Sentinel-1 Synthetic Aperture RADAR (SAR) data and...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiwari, Varun, Kumar, Vinay, Matin, Mir Abdul, Thapa, Amrit, Ellenburg, Walter Lee, Gupta, Nishikant, Thapa, Sunil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437901/
https://www.ncbi.nlm.nih.gov/pubmed/32813701
http://dx.doi.org/10.1371/journal.pone.0237324
Descripción
Sumario:Flood inundation maps provide valuable information towards flood risk preparedness, management, communication, response, and mitigation at the time of disaster, and can be developed by harnessing the power of satellite imagery. In the present study, Sentinel-1 Synthetic Aperture RADAR (SAR) data and Otsu method were utilized to map flood inundation areas. Google Earth Engine (GEE) was used for implementing Otsu algorithm and processing Sentinel—1 SAR data. The results were assessed by (i) calculating a confusion matrix; (ii) comparing the submerge water areas of flooded (Aug 2018), non-flooded (Jan 2018) and previous year’s flooded season (Aug 2016, Aug 2017), and (iii) analyzing historical rainfall patterns to understand the flood event. The overall accuracy for the Sentinel-1 SAR flood inundation maps of 9th and 21st August 2018 was observed as 94.3% and 94.1% respectively. The submerged area (region under water) classified significant flooding as compared to the non-flooded (January 2018) and previous year’s same season (August 2015–2017) classified outputs. Summing up, observations from Sentinel-1 SAR data using Otsu algorithm in GEE can act as a powerful tool for mapping flood inundation areas at the time of disaster, and enhance existing efforts towards saving lives and livelihoods of communities, and safeguarding infrastructure and businesses.