Cargando…

A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data

BACKGROUND: Gene co-expression networks (GCNs) are powerful tools that enable biologists to examine associations between genes during different biological processes. With the advancement of new technologies, such as single-cell RNA sequencing (scRNA-seq), there is a need for developing novel network...

Descripción completa

Detalles Bibliográficos
Autores principales: Sekula, Michael, Gaskins, Jeremy, Datta, Susmita
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437941/
https://www.ncbi.nlm.nih.gov/pubmed/32811424
http://dx.doi.org/10.1186/s12859-020-03707-y
Descripción
Sumario:BACKGROUND: Gene co-expression networks (GCNs) are powerful tools that enable biologists to examine associations between genes during different biological processes. With the advancement of new technologies, such as single-cell RNA sequencing (scRNA-seq), there is a need for developing novel network methods appropriate for new types of data. RESULTS: We present a novel sparse Bayesian factor model to explore the network structure associated with genes in scRNA-seq data. Latent factors impact the gene expression values for each cell and provide flexibility to account for common features of scRNA-seq: high proportions of zero values, increased cell-to-cell variability, and overdispersion due to abnormally large expression counts. From our model, we construct a GCN by analyzing the positive and negative associations of the factors that are shared between each pair of genes. CONCLUSIONS: Simulation studies demonstrate that our methodology has high power in identifying gene-gene associations while maintaining a nominal false discovery rate. In real data analyses, our model identifies more known and predicted protein-protein interactions than other competing network models.