Cargando…
A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data
BACKGROUND: Gene co-expression networks (GCNs) are powerful tools that enable biologists to examine associations between genes during different biological processes. With the advancement of new technologies, such as single-cell RNA sequencing (scRNA-seq), there is a need for developing novel network...
Autores principales: | Sekula, Michael, Gaskins, Jeremy, Datta, Susmita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7437941/ https://www.ncbi.nlm.nih.gov/pubmed/32811424 http://dx.doi.org/10.1186/s12859-020-03707-y |
Ejemplares similares
-
Single-Cell Differential Network Analysis with Sparse Bayesian Factor Models
por: Sekula, Michael, et al.
Publicado: (2022) -
Bayesian inference on quasi-sparse count data
por: Datta, Jyotishka, et al.
Publicado: (2016) -
Inferring Cell–Cell Communications from Spatially Resolved Transcriptomics Data Using a Bayesian Tweedie Model
por: Wu, Dongyuan, et al.
Publicado: (2023) -
Analysis and correction of compositional bias in sparse sequencing count data
por: Kumar, M. Senthil, et al.
Publicado: (2018) -
Network construction and structure detection with metagenomic count data
por: Liu, Zhenqiu, et al.
Publicado: (2015)