Cargando…

The protective effects of human milk-derived peptides on the pancreatic islet biology

Several epidemiological studies support the protective role of breastfeeding in reducing the risk for type 1 diabetes. Human breast milk is the perfect nutrition for infants and contains many complex proteins, lipids and carbohydrates. In this study, we examined the physiological effects of human mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Amitoj, Enjapoori, Ashwantha Kumar, Gibert, Yann, Dwyer, Karen M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438016/
https://www.ncbi.nlm.nih.gov/pubmed/32694188
http://dx.doi.org/10.1242/bio.049304
Descripción
Sumario:Several epidemiological studies support the protective role of breastfeeding in reducing the risk for type 1 diabetes. Human breast milk is the perfect nutrition for infants and contains many complex proteins, lipids and carbohydrates. In this study, we examined the physiological effects of human milk-derived opioid peptides, β-casomorphins (BCM), and compared them with bovine-milk-derived opioid peptides on pancreatic hormone regulation and β-cell regeneration. Exposure of wild-type zebrafish embryos to 50 µg/ml of human BCM-5 and -7 from 3 days post fertilisation until 6 days post fertilisation resulted in an increased insulin domain of expression while exposure to bovine BCM-5 and -7 significantly reduced the insulin domain of expression as analysed by whole-mount in situ hybridisation. These changes may be accounted for by reduced insulin expression or β-cell number and were mitigated by the µ-opioid receptor antagonist, naloxone. The effect of BCM on β-cell regeneration was assessed following ablation of β-cells in Tg (ins: CFP-NTR) zebrafish from 3 days post fertilisation to 4 days post fertilisation, followed by exposure of bovine and human BCM-5 and -7 (50 µg/ml) from 4 days post fertilisation until 7 days post fertilisation. The regenerative capacity of β-cells was not impeded following exposure to human BCM-5 and -7, whereas the capacity of β-cells to regenerate following bovine BCM-5 and -7 exposure was reduced. Our data suggest that human BCM-5 and -7 may promote β-cell development and enable the regeneration of β-cells, while the bovine-milk-derived peptides, BCM-5 and -7, play an opposite role. These data may provide some biological explanation for the protective effect of breastfeeding on the development of type 1 diabetes.