Cargando…

Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium

Vancomycin-resistant Enterococcus faecium (VREfm) is an emerging antibiotic-resistant pathogen. Strain-level investigations are beginning to reveal the molecular mechanisms used by VREfm to colonize regions of the human bowel. However, the role of commensal bacteria during VREfm colonization, in par...

Descripción completa

Detalles Bibliográficos
Autores principales: Mu, Andre, Carter, Glen P., Li, Lucy, Isles, Nicole S., Vrbanac, Alison F., Morton, James T., Jarmusch, Alan K., De Souza, David P., Narayana, Vinod K., Kanojia, Komal, Nijagal, Brunda, McConville, Malcolm J., Knight, Rob, Howden, Benjamin P., Stinear, Timothy P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438022/
https://www.ncbi.nlm.nih.gov/pubmed/32817384
http://dx.doi.org/10.1128/mSystems.00452-20
_version_ 1783572728765218816
author Mu, Andre
Carter, Glen P.
Li, Lucy
Isles, Nicole S.
Vrbanac, Alison F.
Morton, James T.
Jarmusch, Alan K.
De Souza, David P.
Narayana, Vinod K.
Kanojia, Komal
Nijagal, Brunda
McConville, Malcolm J.
Knight, Rob
Howden, Benjamin P.
Stinear, Timothy P.
author_facet Mu, Andre
Carter, Glen P.
Li, Lucy
Isles, Nicole S.
Vrbanac, Alison F.
Morton, James T.
Jarmusch, Alan K.
De Souza, David P.
Narayana, Vinod K.
Kanojia, Komal
Nijagal, Brunda
McConville, Malcolm J.
Knight, Rob
Howden, Benjamin P.
Stinear, Timothy P.
author_sort Mu, Andre
collection PubMed
description Vancomycin-resistant Enterococcus faecium (VREfm) is an emerging antibiotic-resistant pathogen. Strain-level investigations are beginning to reveal the molecular mechanisms used by VREfm to colonize regions of the human bowel. However, the role of commensal bacteria during VREfm colonization, in particular following antibiotic treatment, remains largely unknown. We employed amplicon 16S rRNA gene sequencing and metabolomics in a murine model system to try and investigate functional roles of the gut microbiome during VREfm colonization. First-order taxonomic shifts between Bacteroidetes and Tenericutes within the gut microbial community composition were detected both in response to pretreatment using ceftriaxone and to subsequent VREfm challenge. Using neural networking approaches to find cooccurrence profiles of bacteria and metabolites, we detected key metabolome features associated with butyric acid during and after VREfm colonization. These metabolite features were associated with Bacteroides, indicative of a transition toward a preantibiotic naive microbiome. This study shows the impacts of antibiotics on the gut ecosystem and the progression of the microbiome in response to colonization with VREfm. Our results offer insights toward identifying potential nonantibiotic alternatives to eliminate VREfm through metabolic reengineering to preferentially select for Bacteroides. IMPORTANCE This study demonstrates the importance and power of linking bacterial composition profiling with metabolomics to find the interactions between commensal gut bacteria and a specific pathogen. Knowledge from this research will inform gut microbiome engineering strategies, with the aim of translating observations from animal models to human-relevant therapeutic applications.
format Online
Article
Text
id pubmed-7438022
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-74380222020-08-24 Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium Mu, Andre Carter, Glen P. Li, Lucy Isles, Nicole S. Vrbanac, Alison F. Morton, James T. Jarmusch, Alan K. De Souza, David P. Narayana, Vinod K. Kanojia, Komal Nijagal, Brunda McConville, Malcolm J. Knight, Rob Howden, Benjamin P. Stinear, Timothy P. mSystems Research Article Vancomycin-resistant Enterococcus faecium (VREfm) is an emerging antibiotic-resistant pathogen. Strain-level investigations are beginning to reveal the molecular mechanisms used by VREfm to colonize regions of the human bowel. However, the role of commensal bacteria during VREfm colonization, in particular following antibiotic treatment, remains largely unknown. We employed amplicon 16S rRNA gene sequencing and metabolomics in a murine model system to try and investigate functional roles of the gut microbiome during VREfm colonization. First-order taxonomic shifts between Bacteroidetes and Tenericutes within the gut microbial community composition were detected both in response to pretreatment using ceftriaxone and to subsequent VREfm challenge. Using neural networking approaches to find cooccurrence profiles of bacteria and metabolites, we detected key metabolome features associated with butyric acid during and after VREfm colonization. These metabolite features were associated with Bacteroides, indicative of a transition toward a preantibiotic naive microbiome. This study shows the impacts of antibiotics on the gut ecosystem and the progression of the microbiome in response to colonization with VREfm. Our results offer insights toward identifying potential nonantibiotic alternatives to eliminate VREfm through metabolic reengineering to preferentially select for Bacteroides. IMPORTANCE This study demonstrates the importance and power of linking bacterial composition profiling with metabolomics to find the interactions between commensal gut bacteria and a specific pathogen. Knowledge from this research will inform gut microbiome engineering strategies, with the aim of translating observations from animal models to human-relevant therapeutic applications. American Society for Microbiology 2020-08-18 /pmc/articles/PMC7438022/ /pubmed/32817384 http://dx.doi.org/10.1128/mSystems.00452-20 Text en Copyright © 2020 Mu et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Mu, Andre
Carter, Glen P.
Li, Lucy
Isles, Nicole S.
Vrbanac, Alison F.
Morton, James T.
Jarmusch, Alan K.
De Souza, David P.
Narayana, Vinod K.
Kanojia, Komal
Nijagal, Brunda
McConville, Malcolm J.
Knight, Rob
Howden, Benjamin P.
Stinear, Timothy P.
Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium
title Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium
title_full Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium
title_fullStr Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium
title_full_unstemmed Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium
title_short Microbe-Metabolite Associations Linked to the Rebounding Murine Gut Microbiome Postcolonization with Vancomycin-Resistant Enterococcus faecium
title_sort microbe-metabolite associations linked to the rebounding murine gut microbiome postcolonization with vancomycin-resistant enterococcus faecium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438022/
https://www.ncbi.nlm.nih.gov/pubmed/32817384
http://dx.doi.org/10.1128/mSystems.00452-20
work_keys_str_mv AT muandre microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT carterglenp microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT lilucy microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT islesnicoles microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT vrbanacalisonf microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT mortonjamest microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT jarmuschalank microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT desouzadavidp microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT narayanavinodk microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT kanojiakomal microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT nijagalbrunda microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT mcconvillemalcolmj microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT knightrob microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT howdenbenjaminp microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium
AT stineartimothyp microbemetaboliteassociationslinkedtothereboundingmurinegutmicrobiomepostcolonizationwithvancomycinresistantenterococcusfaecium