Cargando…

Machine learning enables completely automatic tuning of a quantum device faster than human experts

Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eig...

Descripción completa

Detalles Bibliográficos
Autores principales: Moon, H., Lennon, D. T., Kirkpatrick, J., van Esbroeck, N. M., Camenzind, L. C., Yu, Liuqi, Vigneau, F., Zumbühl, D. M., Briggs, G. A. D., Osborne, M. A., Sejdinovic, D., Laird, E. A., Ares, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438325/
https://www.ncbi.nlm.nih.gov/pubmed/32814777
http://dx.doi.org/10.1038/s41467-020-17835-9
_version_ 1783572771882663936
author Moon, H.
Lennon, D. T.
Kirkpatrick, J.
van Esbroeck, N. M.
Camenzind, L. C.
Yu, Liuqi
Vigneau, F.
Zumbühl, D. M.
Briggs, G. A. D.
Osborne, M. A.
Sejdinovic, D.
Laird, E. A.
Ares, N.
author_facet Moon, H.
Lennon, D. T.
Kirkpatrick, J.
van Esbroeck, N. M.
Camenzind, L. C.
Yu, Liuqi
Vigneau, F.
Zumbühl, D. M.
Briggs, G. A. D.
Osborne, M. A.
Sejdinovic, D.
Laird, E. A.
Ares, N.
author_sort Moon, H.
collection PubMed
description Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies.
format Online
Article
Text
id pubmed-7438325
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-74383252020-08-28 Machine learning enables completely automatic tuning of a quantum device faster than human experts Moon, H. Lennon, D. T. Kirkpatrick, J. van Esbroeck, N. M. Camenzind, L. C. Yu, Liuqi Vigneau, F. Zumbühl, D. M. Briggs, G. A. D. Osborne, M. A. Sejdinovic, D. Laird, E. A. Ares, N. Nat Commun Article Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies. Nature Publishing Group UK 2020-08-19 /pmc/articles/PMC7438325/ /pubmed/32814777 http://dx.doi.org/10.1038/s41467-020-17835-9 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Moon, H.
Lennon, D. T.
Kirkpatrick, J.
van Esbroeck, N. M.
Camenzind, L. C.
Yu, Liuqi
Vigneau, F.
Zumbühl, D. M.
Briggs, G. A. D.
Osborne, M. A.
Sejdinovic, D.
Laird, E. A.
Ares, N.
Machine learning enables completely automatic tuning of a quantum device faster than human experts
title Machine learning enables completely automatic tuning of a quantum device faster than human experts
title_full Machine learning enables completely automatic tuning of a quantum device faster than human experts
title_fullStr Machine learning enables completely automatic tuning of a quantum device faster than human experts
title_full_unstemmed Machine learning enables completely automatic tuning of a quantum device faster than human experts
title_short Machine learning enables completely automatic tuning of a quantum device faster than human experts
title_sort machine learning enables completely automatic tuning of a quantum device faster than human experts
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438325/
https://www.ncbi.nlm.nih.gov/pubmed/32814777
http://dx.doi.org/10.1038/s41467-020-17835-9
work_keys_str_mv AT moonh machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT lennondt machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT kirkpatrickj machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT vanesbroecknm machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT camenzindlc machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT yuliuqi machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT vigneauf machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT zumbuhldm machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT briggsgad machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT osbornema machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT sejdinovicd machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT lairdea machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts
AT aresn machinelearningenablescompletelyautomatictuningofaquantumdevicefasterthanhumanexperts